Date: |
1998 |
Abstract: |
An algorithm based on a combination of the polyhedral and quadratic approximation is given for finding stationary points for unconstrained minimization problems with locally Lipschitz problem functions that are not necessarily convex or differentiable. Global convergence of the algorithm is established. Under additional assumptions, it is shown that the algorithm generates Newton iterations and that the convergence is superlinear. Some encouraging numerical experience is reported. . |
Rights: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
Language: |
Anglès |
Document: |
Article ; recerca ; Versió publicada |
Subject: |
Nondifferentiable minimization ;
Numerical methods ;
Quadratic approximation ;
Global convergence ;
Superlinear convergence |
Published in: |
Mathematical Programming, vol. 83 n. 3 (1998) p. 373-391, ISSN 0025-5610 |