Web of Science: 35 citations, Scopus: 19 citations, Google Scholar: citations,
Magnetoelectric effect and phase transitions in CuO in external magnetic fields
Wang, Zhaosheng (Helmholtz-Zentrum Dresden-Rossendorf)
Qureshi, Navid (Institut Laue Langevin)
Yasin, Shadi (Helmholtz-Zentrum Dresden-Rossendorf)
Mukhin, Alexander (Institut obshcheĭ fiziki im. A.M. Prokhorova)
Ressouche, Eric (Institute for Nanoscience and Cryogenics. Service de Physique Statistique, Magnétisme et Supraconductivité)
Zherlitsyn, Sergei (Hochfeld-Magnetlabor Dresden (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf)
Skourski, Yurii (Helmholtz-Zentrum Dresden-Rossendorf)
Geshev, Julian (Universitat Autònoma de Barcelona. Departament de Física)
Ivanov, Vsevolod (Institut obshcheĭ fiziki im. A.M. Prokhorova)
Gospodinov, Marin (Bŭlgarska akademii︠a︡ na naukite. Institute of Solid State Physics)
Skumryev, Vassil (Universitat Autònoma de Barcelona. Departament de Física)

Date: 2016
Abstract: Apart from being so far the only known binary multiferroic compound, CuO has a much higher transition temperature into the multiferroic state, 230 K, than any other known material in which the electric polarization is induced by spontaneous magnetic order, typically lower than 100 K. Although the magnetically induced ferroelectricity of CuO is firmly established, no magnetoelectric effect has been observed so far as direct crosstalk between bulk magnetization and electric polarization counterparts. Here we demonstrate that high magnetic fields of ≈50 T are able to suppress the helical modulation of the spins in the multiferroic phase and dramatically affect the electric polarization. Furthermore, just below the spontaneous transition from commensurate (paraelectric) to incommensurate (ferroelectric) structures at 213 K, even modest magnetic fields induce a transition into the incommensurate structure and then suppress it at higher field. Thus, remarkable hidden magnetoelectric features are uncovered, establishing CuO as prototype multiferroic with abundance of competitive magnetic interactions. Whilst CuO possesses spontaneous electrical polarization induced by its magnetic order, no magnetoelectric control of one by the other has been observed. Here, the authors demonstrate modification of the electrical polarization of CuO by suppressing its magnetic helix via an applied magnetic field.
Note: Número d'acord de subvenció EC/FP7/316309
Note: Número d'acord de subvenció MINECO/MAT2014-56063-C2-1-R
Note: Número d'acord de subvenció MINECO/MAT2011-29269-C03
Note: Número d'acord de subvenció AGAUR/2014/SGR-734
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès.
Document: article ; recerca ; publishedVersion
Subject: Magnetic properties and materials ; Phase transitions and critical phenomena
Published in: Nature communications, Vol. 7 (Jan. 2016) , art. 10295, ISSN 2041-1723

DOI: 10.1038/ncomms10295
PMID: 26776921

8 p, 1.3 MB

The record appears in these collections:
Articles > Research articles
Articles > Published articles

 Record created 2018-02-07, last modified 2019-01-21

   Favorit i Compartir