Convergence and integrability of fourier transforms / Alberto Debernardi Pinos ; Director: Sergey Tikhonov.
Debernardi Pinos, Alberto, autor.
Tikhonov, Sergey, 1976- supervisor acadèmic.
Universitat Autònoma de Barcelona. Departament de Matemàtiques.
Centre de Recerca Matemàtica.

Publicació: [Barcelona] : Universitat Autònoma de Barcelona, 2018.
Descripció: 1 recurs en línia (137 pàgines)
Resum: El propòsit d'aquesta tesi és el d'estudiar dos tipus de problema diferents per a certes transformades de Fourier. Primer investiguem la convergència uniforme d'integrals sinusoidals en una i dos dimensions. Per a dur a terme aquesta investigació, utilitzem una condicio de monotonia general, recentment introduïda, tot desenvolupant aquesta teoria en concordança amb les nostres necessitats. Com a resultats principals, obtenim condicions necessàries i suficients que les funcions monòtones generals han de satisfer per tal de poder assegurar la convergència uniforme de les seves respectives transformades sinusoidals (en una i dues dimensions). En segon lloc, estudiem la convergència puntual i uniforme de les transformades de Hankel amb pesos, a través de l'estudi de les condicions variacionals, d'integració i de magnitud de les funcions involucrades, amb especial èmfasi en les condicions variacionals. També utilitzem l'esmentada condició de monotonia general, que ens permet traduir condicions variacionals de les funcions en condicions d'integrabilitat o magnitud de les mateixes. Donem condicions suficients per a la convergència puntual, mentre que per a la convergència uniforme, també en donem de necessàries, quan és possible. En els casos en els quals només podem donar condicions suficients per a la convergència uniforme, també comentem l'optimalitat d'aquestes. Finalment, considerem transformades de Fourier generalitzades, i estudiem condicions necessàries i suficients per tal de garantir desigualtats de normes amb pesos entre funcions i les seves transformades. Les desigualtats de normes amb pesos es poden considerar com a versions quantitatives del principi d'incertesa. Donem especial rellevància a les desigualtats amb pesos del tipus funció potencial i les transformades sinusoidals, cosinusoidals, de Hankel, i de Struve. També utilitzem la condició de monotonia general en aquest problema, que ens permet obtenir condicions necessàries i suficients menys restrictives per poder garantir desigualtats de normes amb pesos.
Resum: The purpose of this dissertation is to study two different kind of problems for certain types of Fourier transforms. First, we investigate the uniform convergence of one and two-dimensional sine transforms. To this end, we make use of a general monotonicity condition that has been recently introduced, and develop the theory further according to our needs. We mainly obtain necessary and sufficient conditions on general monotone functions for the uniform convergence of their respective (single and double) sine integrals. Secondly, we study pointwise and uniform convergence of weighted Hankel transforms through an approach that consists on studying the variational, integrability, and magnitude conditions of the involved functions, with special emphasis on variational conditions. Here we also use the aforementioned general monotonicity, which allows us to translate from variational conditions to magnitude/integrability conditions of the functions. For the pointwise convergence only sufficient conditions are obtained, whilst for the uniform convergence, it is sometimes possible to obtain necessary and sufficient conditions. In the case when only sufficient conditions for the uniform convergence are given, the sharpness of those are discussed. Finally, we consider generalized Fourier transforms and study necessary and sufficient conditions for weighted norm inequalities between functions and their transforms to hold. Weighted norm inequalities can be considered as quantitative uncertainty principle relations. We particularly focus on inequalities with power weights and the sine, cosine, Hankel, and Struve transforms. We also make use of the general monotonicity condition in this problem, which allows us to obtain less restrictive necessary and sufficient for the weighted norm inequalities to hold.
Nota: Tesi. Doctorat. Universitat Autònoma de Barcelona. Departament de Matemàtiques. 2018. Tesi. Doctorat. Centre de Recerca Matemàtica. 2018.
Drets: L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: Creative Commons
Llengua: Anglès.
Document: Tesis i dissertacions electròniques. ; doctoralThesis ; publishedVersion
Matèria: Fourier, Transformacions de ; Convergència (Matemàtica)
ISBN: 9788449078590

Adreça alternativa: https://hdl.handle.net/10803/463030


138 p, 1.6 MB

El registre apareix a les col·leccions:
Documents de recerca > Tesis doctorals

 Registre creat el 2018-06-04, darrera modificació el 2019-02-15



   Favorit i Compartir