Web of Science: 22 citations, Google Scholar: citations
Weighted inequalities and vector-valued Calderón-Zygmund operators on non-homogeneous spaces
García-Cuerva Abengoza, José
Martell, J. M.

Date: 2000
Abstract: Recently, F. Nazarov, S. Treil and A. Volberg (and independently X. Tolsa) have extended the classical theory of Calderón-Zygmund operators to the context of a "non-homogeneous" space (X, d, µ), where, in particular, the measure µ may be non-doubling. In the present work we study weighted inequalities for these operators. Specifically, for 1 < p < [infinity], we identify sufficient conditions for the weight on one side, which guarantee the existence of another weight in the other side, so that the weighted Lp inequality holds. We deal with this problem by developing a vector-valued theory for Calderón-Zygmund operators on non-homogeneous spaces which is interesting in its own right. For the case of the Cauchy integral operator, which is the most important example, we even prove that the conditions for the weights are also necessary.
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Article ; recerca ; Versió publicada
Published in: Publicacions matemàtiques, V. 44 N. 2 (2000) , p. 613-640, ISSN 2014-4350

Adreça alternativa: https://raco.cat/index.php/PublicacionsMatematiques/article/view/38003
DOI: 10.5565/PUBLMAT_44200_12


28 p, 252.4 KB

The record appears in these collections:
Articles > Published articles > Publicacions matemàtiques
Articles > Research articles

 Record created 2006-03-13, last modified 2024-12-07



   Favorit i Compartir