Optimal government policies in models with heterogeneous agents
Bohácek, Radim
Kejak, Michal

Date: 2018
Abstract: In this paper we develop a new approach for funding optimal government policies in economies with heterogeneous agents. Using the calculus of variations, we present three classes of equilibrium conditions from government's and individual agent's optimization problems: 1) the first order conditions: the government's Lagrange-Euler equation and the individual agent's Euler equation; 2) the stationarity condition on the distribution function; and, 3) the aggregate market clearing conditions. These conditions form a system of functional equations which we solve numerically. The solution takes into account simultaneously the e_ect of the government policy on individual allocations, the resulting optimal distribution of agents in the steady state and, therefore, equilibrium prices. We illustrate the methodology on a Ramsey problem with heterogeneous agents, finding the optimal limiting tax on total income.
Abstract: The ADEMU Working Paper Series is being supported by the European Commission Horizon 2020 European Union funding for Research & Innovation, grant agreement No 649396.
Note: Número d'acord de subvenció EC/H2020/649396
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès.
Series: Barcelona Graduate School of Economics: ADEMU working paper series
Series: ADEMU Working Paper Series ; 130
Document: workingPaper
Subject: Optimal macroeconomic policy ; Optimal taxation ; Computational techniques ; Heterogeneous agents ; Distribution of wealth and income

Adreça alternativa: https://hdl.handle.net/10230/35524


29 p, 530.6 KB

The record appears in these collections:
Research literature > Working papers

 Record created 2018-10-23, last modified 2018-11-12



   Favorit i Compartir