| Date: |
2002 |
| Abstract: |
It is not known whether or not the stable rational cohomology groups H*(Aut(F[infinity]);Q) always vanish (see Hatcher in [5] and Hatcher and Vogtmann in [7] where they pose the question and show that it does vanish in the first 6 dimensions). We show that either the rational cohomology does not vanish in certain dimensions, or the integral cohomology of a moduli space of pointed graphs does not stabilize in certain other dimensions. Similar results are stated for groups of outer automorphisms. This yields that H5(Qm; Z), H6(Qm; Z), and H5(Qm; Z) never stabilize as m --> [infinity], where the moduli spaces ^Qm and Qm are the quotients of the spines ^Xm and Xm of "outer space" and "auter space", respectively, introduced in [3] by Culler and Vogtmann and [6] by Hatcher and Vogtmann. |
| Rights: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió publicada |
| Published in: |
Publicacions matemàtiques, V. 46 N. 1 (2002) , p. 97-118, ISSN 2014-4350 |