Web of Science: 4 citations, Scopus: 4 citations, Google Scholar: citations
Boundedness of the Weyl fractional integral on one-sided weighted Lebesgue and Lipschitz spaces
Ombrosi, S. (Universidad de Buenos Aires. Departamento de Matemática)
De Rosa, L. (Universidad de Buenos Aires. Departamento de Matemática)

Date: 2003
Abstract: In this paper we introduce the one-sided weighted spaces L-w (β), -1 <β< 1. The purpose of this definition is to obtain an extension of the Weyl fractional integral operator I+α from Lp w into a suitable weighted space. Under certain condition on the weight w, we have that L-w (0) coincides with the dual of the Hardy space H1 -(w). We prove for 0 <β< 1, that L- w (β) consists of all functions satisfying a weighted Lipschitz condition. In order to give another characterization of L- w (β), 0 ≤ β < 1, we also prove a one-sided version of John-Nirenberg Inequality. Finally, we obtain necessary and sufficient conditions on the weight w for the boundedness of an extension of I+ α from Lp w into L- w (β), -1 <β< 1, and its extension to a bounded operator from L- w (0) into L- w (α).
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Weyl fractional integral ; Weigths ; Weighted Lebesgue and Lipschitz spaces ; Weighted BMO
Published in: Publicacions matemàtiques, V. 47 N. 1 (2003) , p. 71-102, ISSN 2014-4350

Adreça alternativa: https://raco.cat/index.php/PublicacionsMatematiques/article/view/38067
DOI: 10.5565/PUBLMAT_47103_04


32 p, 265.7 KB

The record appears in these collections:
Articles > Published articles > Publicacions matemàtiques
Articles > Research articles

 Record created 2006-03-13, last modified 2025-10-12



   Favorit i Compartir