Web of Science: 5 cites, Scopus: 5 cites, Google Scholar: cites,
High performing immobilized Baeyer-Villiger monooxygenase and glucose dehydrogenase for the synthesis of ε-caprolactone derivative
Delgove, Marie A. F. (Aachen-Maastricht Institute for Biobased Materials)
Valencia, Daniela (Universitat Autònoma de Barcelona. Departament d'Enginyeria Química, Biològica i Ambiental)
Solé Ferré, Jordi (Universitat Autònoma de Barcelona. Departament d'Enginyeria Química, Biològica i Ambiental)
Bernaerts, Katrien V. (Aachen-Maastricht Institute for Biobased Materials)
De Wildeman, Stefaan M. A. (Aachen-Maastricht Institute for Biobased Materials)
Guillén Montalbán, Marina (Universitat Autònoma de Barcelona. Departament d'Enginyeria Química, Biològica i Ambiental)
Álvaro Campos, Gregorio (Universitat Autònoma de Barcelona. Departament d'Enginyeria Química, Biològica i Ambiental)

Data: 2019
Resum: The industrial application of Baeyer-Villiger monooxygenases (BVMOs) is typically hindered by stability and cofactor regeneration considerations. The stability of biocatalysts can be improved by immobilization. The goal of this study was to evaluate the (co)-immobilization of a thermostable cyclohexanone monooxygenase from Thermocrispum municipale (TmCHMO) with a glucose dehydrogenase (GDH) from Thermoplasma acidophilum for NADPH cofactor regeneration. Both enzymes were immobilized on an amino-functionalized agarose-based support (MANA-agarose). They were applied to the oxidation of 3,3,5-trimethylcyclohexanone for the synthesis of ε-caprolactone derivatives which are precursors of polyesters. The performances of the immobilized biocatalysts were evaluated in reutilization reactions with as many as 15 cycles and compared to the corresponding soluble enzymes. Co-immobilization proved to provide the most efficient biocatalyst with an average conversion of 83% over 15 reutilization cycles leading to a 50-fold increase of the biocatalyst yield compared to the use of soluble enzymes which were applied in a fed-batch strategy. TmCHMO was immobilized for the first time in this work, with very good retention of the activity throughout reutilization cycles. This immobilized biocatalyst contributes to the application of BVMOs in up-scaled biooxidation processes.
Nota: Número d'acord de subvenció EC/H2020/635734
Nota: Número d'acord de subvenció AGAUR/2017/SGR-1462
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès.
Document: article ; recerca ; submittedVersion ; acceptedVersion
Matèria: Biocatalyst immobilization ; Baeyer-Villiger monooxygenase ; Lactone monomer ; Cofactor recycling ; Glucose dehydrogenase
Publicat a: Applied catalysis A: General, Vol. 572 (Feb. 2019) , p. 134-141, ISSN 0926-860X

DOI: 10.1016/j.apcata.2018.12.036


Preprint
25 p, 803.3 KB

Disponible a partir de: 2021-02-28
Postprint

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2019-02-27, darrera modificació el 2019-11-14



   Favorit i Compartir