Web of Science: 6 citations, Scopus: 5 citations, Google Scholar: citations,
Protein-Corona-by-Design in 2D : A Reliable Platform to Decode Bio–Nano Interactions for the Next-Generation Quality-by-Design Nanomedicines
Mei, Kuo‐Ching (King's College London)
Ghazaryan, Artur (Max Planck Institute for Polymer Research)
Teoh, Er Zhen (King's College London)
Summers, Huw D. (Swansea University)
Li, Yueting (Guizhou Medical University)
Ballesteros, Belén (Institut Català de Nanociència i Nanotecnologia)
Piasecka, Justyna (Swansea University)
Walters, Adam (King's College London)
Hider, Robert C. (King's College London)
Mailänder, Volker (Johannes Gutenberg-University. Department of Dermatology)
Al-Jamal, Khuloud T. (King's College London)

Date: 2018
Abstract: Hard corona (HC) protein, i. e. , the environmental proteins of the biological medium that are bound to a nanosurface, is known to affect the biological fate of a nanomedicine. Due to the size, curvature, and specific surface area (SSA) 3-factor interactions inherited in the traditional 3D nanoparticle, HC-dependent bio–nano interactions are often poorly probed and interpreted. Here, the first HC-by-design case study in 2D is demonstrated that sequentially and linearly changes the HC quantity using functionalized graphene oxide (GO) nanosheets. The HC quantity and HC quality are analyzed using NanoDrop and label-free liquid chromatography–mass spectrometry (LC-MS) followed by principal component analysis (PCA). Cellular responses (uptake and cytotoxicity in J774 cell model) are compared using imaging cytometry and the modified lactate dehydrogenase assays, respectively. Cellular uptake linearly and solely correlates with HC quantity (R = 0. 99634). The nanotoxicity, analyzed by retrospective design of experiment (DoE), is found to be dependent on the nanomaterial uptake (primary), HC composition (secondary), and nanomaterial exposure dose (tertiary). This unique 2D design eliminates the size–curvature–SSA multifactor interactions and can serve as a reliable screening platform to uncover HC-dependent bio–nano interactions to enable the next-generation quality-by-design (QbD) nanomedicines for better clinical translation.
Note: Número d'acord de subvenció MINECO/SEV‐2013‐0295
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès.
Document: article ; recerca ; publishedVersion
Subject: Click chemistry ; Drug delivery ; Graphene ; Nanomedicine ; Protein corona ; Toxicity
Published in: Advanced materials, Vol. 30, Issue 40 (October 2018) , art. 1802732, ISSN 1521-4095

DOI: 10.1002/adma.201802732


8 p, 2.5 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (scientific output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2019-06-03, last modified 2019-09-30



   Favorit i Compartir