Novel silicon detector technologies for the HL-LHC ATLAS upgrade / Emanuele Cavallaro ; thesis director Sebastian Grinstein.
Cavallaro, Emanuele, autor.
Grinstein, Sebastian, supervisor acadèmic.
Universitat Autònoma de Barcelona. Institut de Física d'Altes Energies.

Publicació: [Barcelona] : Universitat Autònoma de Barcelona, 2019.
Descripció: 1 recurs en línia (143 pàgines)
Resum: El Large Hadron Collider (LHC) en la Organización Europea para la Investigación Nuclear (CERN), Ginebra, interrumpirá su operación en 2023 para ser mejorado a High Luminosity LHC (HL-LHC) y proporcionar colisiones entre protones con una energı́a en el centro de masa de √s = 14 TeV con una luminosidad de 1035 cm−2 s−1. ATLAS es uno de los experimentos alojados en el LHC que tendrá que ser mejorado para cumplir los nuevos requisitos impuestos por la mayor luminosidad. Las obras de mejora de ATLAS prevén la sustitución del Inner Detector por un detector de trazas interamente de silicio, el Inner Tracker (ITk), con una granularidad más pequeña y una mayor resistencia a la radiación, y la introducción del High Granularity Timing Detector (HGTD), que proporcionará información temporal de las trazas y de los vértices. Combinando las medidas de ITk y HGTD será posible resolver vértices cercanos en el espacio pero con suficiente separación temporal, lo cual mejora las prestaciones de ATLAS. En esta tesis se investigan dos nuevas tecnologı́as de detectores de silicio para aplicaciones en el HGTD y el ITk, la tecnologı́a de Low Gain Avalanche Detector (LGAD) y la de HV-CMOS. La tecnologı́a LGAD consiste en detectores planares de silicio n-on-p con un implante altamente dopado de tipo p debajo del electrodo de tipo n. Originalmente fue desarrollada para detectores de trazas resistentes a la radiación, pero la segmentación del electrodo demostró afectar al mecanismo de multiplicación y no se ha observado ganancia en los primeros dispositivos. Por otro lado, detectores LGAD delgados han mostrado una resolución temporal de aproximadamente 30 ps y fueron elegidos como de base para los sensores del HGTD. Estudios de sensores LGAD, antes y después de la irradiación, se realizaron por primera vez en el contexto de esta tesis. La tecnologı́a HV-CMOS originalmente aspriaba a producir sensores con pı́xel activo, con la ventaja, en comparación con los dispositivos hı́bridos estándar, de poder optar por el acoplamiento capacitivo. Sin embargo, durante el proceso de IyD, resultó claro que los dispositivos monolı́ticos en tecnologı́a HV-CMOS ofrecen las ventajas más prometedoras: una moderada resistencia a la radiación y la reducción de costos. Esta tesis incluye la caracterización de la primera muestra a escala completa de un chip HV-CMOS para el experimento ATLAS. Actualmente, esta tecnologı́a se tiene en cuenta como una opción de inserción para la capa externa del detector de pı́xeles del ITk.
Resum: The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), Geneva, will interrupt its operation in 2023 to be upgraded to high luminosity (HL-LHC) and provide proton-proton collisions with a center of mass energy of √s = 14 TeV at a luminosity of 1035 cm−2 s−1. ATLAS, one of the two general purpose experiments at the LHC , will have to be upgraded to meet the new requirements given by the larger luminosity. Among other things the ATLAS upgrade foresees the replacement of the Inner Detector with a full silicon Inner Tracker (ITk), with finer granularity and improved radiation tolerance, and the introduction of the High Granularity Timing Detector (HGTD) that will provide timing information of tracks and vertices. Combining the measurements of ITk and HGTD it will be possible to resolve vertices close in space but separated in time, improving the ATLAS reconstruction performance. In this thesis two novel silicon detector technologies are investigated for applications in the HGTD and ITk, the Low Gain Avalanche Detectors (LGAD) and the HV-CMOS technologies. The LGAD technology consists of planar n-on-p silicon detectors with a highly doped p-type implantation underneath the n-type electrode. It was originally developed for radiation hard tracking detectors but the fine segmentation of the electrode proved to affect the charge multiplication mechanism and no gain has been observed on segmented devices. On the other hand, thin LGAD detectors have shown a time resolution of about 30 ps on the detection of minimum ionizing particles and it was chosen as baseline technology for the HGTD sensors. Studies of LGAD sensors, before and after irradiation were first performed in the context of this thesis. The HV-CMOS technology was originally aimed to provide active pixel sensors with the advantage, compared to the standard hybrid devices, of the AC coupling capability. However, during the R&D effort, it become clear that monolithic HV-CMOS devices offered the most promising advantages: moderate radiation hardness and cost reduction. This thesis includes the characterization of the first full scale HV-CMOS chip prototype for the ATLAS experiment. This technology is currently taken into account as a drop-in option for the outer layer of the ITk pixel detector.
Nota: Tesi. Doctorat. Universitat Autònoma de Barcelona. Institut de Física d'Altes Energies. 2018.
Drets: L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: Creative Commons
Llengua: Anglès.
Document: Tesis i dissertacions electròniques. ; doctoralThesis ; publishedVersion
Matèria: ATLAS experiment. ; Díodes de silici.
ISBN: 9788449084713

Adreça alternativa: https://hdl.handle.net/10803/666621


144 p, 4.1 MB

El registre apareix a les col·leccions:
Documents de recerca > Tesis doctorals

 Registre creat el 2019-07-08, darrera modificació el 2019-07-13



   Favorit i Compartir