Google Scholar: citations
Tuning Thermal Transport in Ultrathin Silicon Membranes by Surface Nanoscale Engineering
Neogi, Sanghamitra (Max Planck Institute for Polymer Research)
Reparaz, Juan Sebastian (Institut Català de Nanociència i Nanotecnologia)
Pereira, Luiz Felipe C. (Universidade Federal Do Rio Grande Do Norte. Departamento de Fisica Teorica e Experimental)
Graczykowski, Bartlomiej (Institut Català de Nanociència i Nanotecnologia)
Wagner, Markus R.. (Institut Català de Nanociència i Nanotecnologia)
Sledzinska, Marianna (Institut Català de Nanociència i Nanotecnologia)
Shchepetov, Andrey (VTT Technical Research Centre of Finland)
Prunnila, Mika (VTT Technical Research Centre of Finland)
Ahopelto, Jouni (VTT Technical Research Centre of Finland)
Sotomayor Torres, Clivia M. (Institut Català de Nanociència i Nanotecnologia)
Donadio, Davide (Max Planck Institute for Polymer Research)

Date: 2015
Abstract: A detailed understanding of the connections of fabrication and processing to structural and thermal properties of low-dimensional nanostructures is essential to design materials and devices for phononics, nanoscale thermal management, and thermoelectric applications. Silicon provides an ideal platform to study the relations between structure and heat transport since its thermal conductivity can be tuned over 2 orders of magnitude by nanostructuring. Combining realistic atomistic modeling and experiments, we unravel the origin of the thermal conductivity reduction in ultrathin suspended silicon membranes, down to a thickness of 4 nm. Heat transport is mostly controlled by surface scattering: rough layers of native oxide at surfaces limit the mean free path of thermal phonons below 100 nm. Removing the oxide layers by chemical processing allows us to tune the thermal conductivity over 1 order of magnitude. Our results guide materials design for future phononic applications, setting the length scale at which nanostructuring affects thermal phonons most effectively.
Grants: European Commission 309150
European Commission 604668
European Commission 318117
Ministerio de Economía y Competitividad MAT2012-31392
Ministerio de Ciencia e Innovación CSD2010-0044
European Commission 628197
Note: This is an open access article published under an ACS AuthorChoice License. See Standard ACS AuthorChoice/Editors' Choice Usage Agreement - https://pubs.acs.org/page/policy/authorchoice_termsofuse.html
Rights: Tots els drets reservats.
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Classical molecular dynamics ; Dispersion relations ; Inelastic light scattering ; Lattice thermal transport ; Phonon engineering
Published in: ACS nano, Vol. 9, Issue 4 (April 2015) , p. 3820-3828, ISSN 1936-086X

DOI: 10.1021/nn506792d


9 p, 2.7 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2019-07-26, last modified 2024-06-03



   Favorit i Compartir