Google Scholar: citas,
Multi-terminal transistor-like devices based on strongly correlated metallic oxides for neuromorphic applications
Fernández Rodríguez, Alejandro (Institut de Ciència de Materials de Barcelona, ICMAB-CSIC)
Alcalà, Jordi (Institut de Ciència de Materials de Barcelona, ICMAB-CSIC)
Mestres, Narcis (Institut de Ciència de Materials de Barcelona, ICMAB-CSIC)
Palau, Anna (Institut de Ciència de Materials de Barcelona, ICMAB-CSIC)

Fecha: 2020
Resumen: Memristive devices are attracting a great attention for memory, logic, neural networks, and sensing applications due to their simple structure, high density integration, low-power consumption, and fast operation. In particular, multi-terminal structures controlled by active gates, able to process and manipulate information in parallel, would certainly provide novel concepts for neuromorphic systems. In this way, transistor-based synaptic devices may be designed, where the synaptic weight in the postsynaptic membrane is encoded in a source-drain channel and modified by presynaptic terminals (gates). In this work, we show the potential of reversible field-induced metal-insulator transition (MIT) in strongly correlated metallic oxides for the design of robust and flexible multi-terminal memristive transistor-like devices. We have studied different structures patterned on YBa2Cu3O7−δ films, which are able to display gate modulable non-volatile volume MIT, driven by field-induced oxygen diffusion within the system. The key advantage of these materials is the possibility to homogeneously tune the oxygen diffusion not only in a confined filament or interface, as observed in widely explored binary and complex oxides, but also in the whole material volume. Another important advantage of correlated oxides with respect to devices based on conducting filaments is the significant reduction of cycle-to-cycle and device-to-device variations. In this work, we show several device configurations in which the lateral conduction between a drain-source channel (synaptic weight) is effectively controlled by active gate-tunable volume resistance changes, thus providing the basis for the design of robust and flexible transistor-based artificial synapses.
Derechos: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Lengua: Anglès.
Documento: article ; recerca ; publishedVersion
Materia: Strongly correlated oxides ; Resistive switching ; Neuromorphic computing ; Transistor like devices
Publicado en: Materials, Vol. 13 (2020)

DOI: 10.3390/ma13020281


11 p, 3.9 MB

El registro aparece en las colecciones:
Artículos > Artículos de investigación
Artículos > Artículos publicados

 Registro creado el 2020-01-15, última modificación el 2020-02-12



   Favorit i Compartir