Web of Science: 14 citations, Scopus: 16 citations, Google Scholar: citations
Enhanced flame-retardant capacity of natural rubber/organo-montmorillonite and hyper-branched organo-montmorillonite composites
Wang, Jincheng (Shanghai University of Engineering Science. College of Chemistry and Chemical Engineering)
Guo, Xi (Shanghai University of Engineering Science. College of Chemistry and Chemical Engineering)
Zheng, Xiaoyu (Shanghai University of Engineering Science. College of Chemistry and Chemical Engineering)
Zhao, Yi (Shanghai University of Engineering Science. College of Chemistry and Chemical Engineering)
Li, Weifei (Shanghai University of Engineering Science. College of Chemistry and Chemical Engineering)

Date: 2011
Abstract: Most natural and synthetic rubbers have inherently high flammability, a property which limits their uses. The aim of the present work was to study the effect of organo-montmorillonite (OMMT) and modified OMMT on the flame-retardance and mechanical properties of natural rubber (NR) composites. The OMMT was modified with hyper-branched polymer via condensation polymerization between the intercalation agent, N,N-di(2-hydroxyethyl)-N-dodecyl-N-methylammonium chloride, and the monomer, N,N-dihydroxyl-3-aminomethyl propionate. This modified OMMT was then reacted with phosphate, and a novel flame-retardant hyper-branched organic montmorillonite (FR-HOMMT) was thus obtained. The surface morphology, interlayer space, interlamellar structure, and thermal properties of these modified clays were investigated by Fourier-transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis. The FR-HOMMT showed increased basal spacing and better thermal stabilities due to the different arrangement and thermal stability of the novel organic macromolecular surfactant. Natural rubber NR/OMMT and NR/FR-HOMMT composites were prepared by conventional compounding with OMMT and the phosphorus-based organo-montmorillonite. The cure characteristics, tensile strength, wear resistance, thermal stabilities, and flame-retardant properties were researched and compared. The best dispersion of this modified clay was observed for 20 phr (parts per hundred ofr ubber) ofFR-HOMMT-f illed composite, which resulted in the best mechanical performance with an increase of4 7% in tensile strength, of40% in elongation at break, and decrease of140% in abrasion loss compared with 20 phr of the OMMT-filled matrix. A mechanism for reinforcing and flame retardance is proposed here. The 'anchor' effect caused by the hyper-branched polymer may decrease the number and size ofthe voids in the NR matrix, and thus increase the crack path during tensile drawing. Meanwhile, the flame retardance of the OMMT and the phosphate may increase the number of carbonaceous layers, thus inhibiting the degree ofpyrolysis of the NR matrix during burning.
Rights: Tots els drets reservats.
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Characterization ; Flame-retardant ; Hyper-branched polymer ; Montmorillonte ; Natural rubber
Published in: Clays and Clay Minerals, Vol. 59, Núm. 5 (2011) , p. 446-458, ISSN 1552-8367

DOI: 10.1346/CCMN.2011.0590502


13 p, 3.4 MB
 UAB restricted access

The record appears in these collections:
Articles > Research articles
Articles > Published articles

 Record created 2020-06-10, last modified 2023-06-03



   Favorit i Compartir