Web of Science: 46 citations, Scopus: 47 citations, Google Scholar: citations,
SnS2/g-C3N4/graphite nanocomposites as durable lithium-ion battery anode with high pseudocapacitance contribution
Zuo, Yong (Universitat de Barcelona. Departament d'Enginyeria Electrònica i Biomèdica)
Xu, Xijun (South China University of Technology. State Key Laboratory of Pulp and Paper Engineering)
Zhang, Chaoqi (Universitat de Barcelona. Departament d'Enginyeria Electrònica i Biomèdica)
Li, Junshan (Universitat de Barcelona. Departament d'Enginyeria Electrònica i Biomèdica)
Du, Ruifeng (Universitat de Barcelona. Departament d'Enginyeria Electrònica i Biomèdica)
Wang, Xiang (Universitat de Barcelona. Departament d'Enginyeria Electrònica i Biomèdica)
Han, Xu (Institut Català de Nanociència i Nanotecnologia)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Llorca, Jordi (Universitat Politècnica de Catalunya. Departament d'Enginyeria Química)
Liu, Jun (South China University of Technology. State Key Laboratory of Pulp and Paper Engineering)
Cabot i Codina, Andreu (Institut de Recerca en Energia de Catalunya)

Date: 2020
Abstract: Tin disulfide is a promising anode material for Li-ion batteries (LIB) owing to its high theoretical capacity and the abundance of its composing elements. However, bare SnS suffers from low electrical conductivity and large volume expansion, which results in poor rate performance and cycling stability. Herein, we present a solution-based strategy to grow SnS nanostructures within a matrix of porous g-CN (CN) and high electrical conductivity graphite plates (GPs). We test the resulting nanocomposite as anode in LIBs. First, SnS nanostructures with different geometries are tested, to find out that thin SnS nanoplates (SnS-NPLs) provide the highest performances. Such SnS-NPLs, incorporated into hierarchical SnS/CN/GP nanocomposites, display excellent rate capabilities (536. 5 mA h g at 2. 0 A g) and an outstanding stability (∼99. 7% retention after 400 cycles), which are partially associated with a high pseudocapacitance contribution (88. 8% at 1. 0 mV s). The excellent electrochemical properties of these nanocomposites are ascribed to the synergy created between the three nanocomposite components: i) thin SnS-NPLs provide a large surface for rapid Li-ion intercalation and a proper geometry to stand volume expansions during lithiation/delithiation cycles; ii) porous CN prevents SnS-NPLs aggregation, habilitates efficient channels for Li-ion diffusion and buffer stresses associated to SnS volume changes; and iii) conductive GPs allow an efficient charge transport.
Grants: Ministerio de Economía y Competitividad ENE2016-77798-C4-3-R
Ministerio de Economía y Competitividad ENE2017-85087-C3-3-R
Ministerio de Economía y Competitividad SEV-2017-0706
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-128
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-327
Note: Altres ajuts: the CERCA Programme /Generalitat de Catalunya. Part of the present work has been performed in the framework of Universitat Autònoma de Barcelona Materials Science PhD program.
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió sotmesa a revisió
Subject: Nanocomposite ; Li-ion battery ; Anode ; Tin disulfide ; Pseudocapacitance
Published in: Electrochimica acta, Vol. 349 (July 2020) , art. 136369, ISSN 1873-3859

DOI: 10.1016/j.electacta.2020.136369


Preprint
26 p, 2.3 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2021-01-25, last modified 2025-12-05



   Favorit i Compartir