Google Scholar: citations
Electrical tunability of terahertz nonlinearity in graphene
Kovalev, Sergey (Helmholtz-Zentrum Dresden-Rossendorf)
Hafez, Hassan A. (Universität Bielefeld. Fakultät für Physik)
Tielrooij, Klaas-Jan (Institut Català de Nanociència i Nanotecnologia)
Deinert, Jan-Christoph (Helmholtz-Zentrum Dresden-Rossendorf)
Ilyakov, Igor (Helmholtz-Zentrum Dresden-Rossendorf)
Awari, Nilesh (Helmholtz-Zentrum Dresden-Rossendorf)
Alcaraz Iranzo, David (Institut de Ciències Fotòniques)
Soundarapandian, Karuppasamy (Institut de Ciències Fotòniques)
Saleta Reig, David (Institut Català de Nanociència i Nanotecnologia)
Germanskiy, Semyon (Helmholtz-Zentrum Dresden-Rossendorf)
Chen, Min (Helmholtz-Zentrum Dresden-Rossendorf)
Bawatna, Mohammed (Helmholtz-Zentrum Dresden-Rossendorf)
Green, Bertram (Helmholtz-Zentrum Dresden-Rossendorf)
Koppens, Frank. (Institució Catalana de Recerca i Estudis Avançats)
Mittendorff, Martin (Universität Duisburg-Essen. Fakultät für Physik)
Bonn, Mischa (Max-Planck-Institut für Polymerforschung)
Gensch, Michael (Technische Universität Berlin. Institut für Optik und Atomare Physik)
Turchinovich, Dmitry (Universität Bielefeld. Fakultät für Physik)

Date: 2021
Abstract: Graphene is conceivably the most nonlinear optoelectronic material we know. Its nonlinear optical coefficients in the terahertz frequency range surpass those of other materials by many orders of magnitude. Here, we show that the terahertz nonlinearity of graphene, both for ultrashort single-cycle and quasi-monochromatic multicycle input terahertz signals, can be efficiently controlled using electrical gating, with gating voltages as low as a few volts. For example, optimal electrical gating enhances the power conversion efficiency in terahertz third-harmonic generation in graphene by about two orders of magnitude. Our experimental results are in quantitative agreement with a physical model of the graphene nonlinearity, describing the time-dependent thermodynamic balance maintained within the electronic population of graphene during interaction with ultrafast electric fields. Our results can serve as a basis for straightforward and accurate design of devices and applications for efficient electronic signal processing in graphene at ultrahigh frequencies.
Grants: European Commission 964735
European Commission 881603
European Commission 804349
European Commission 654220
Ministerio de Economía y Competitividad SEV-2016-81044
Ministerio de Economía y Competitividad FIS-2017-0706
Ministerio de Ciencia e Innovación CEX2019-000910-S
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1656
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Electronic signal processing ; Non-linear optical coefficients ; Opto-electronic materials ; Power conversion efficiencies ; Quantitative agreement ; Terahertz frequency range ; Thermodynamic balance ; Ultra-high frequency
Published in: Science advances, Vol. 7, issue 15 (April 2021) , art. eabf9809, ISSN 2375-2548

DOI: 10.1126/SCIADV.ABF9809
PMID: 33827824


10 p, 1.0 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2021-05-28, last modified 2023-10-30



   Favorit i Compartir