Prion inspired nanomaterials and their biomedical applications
Wang, Weiqiang
Ventura Zamora, Salvador, dir.
Navarro, Susanna, dir.

Data: 2020
Resum: Els amiloides presenten una estructura fibril·lar molt ordenada. Molts d'aquests conjunts de proteïnes apareixen associats a malalties humanes. No obstant això, es pot aprofitar la naturalesa controlable, estable, ajustable i robusta de les fibres amiloides per crear nanomaterials amb una àmplia gamma d'aplicacions. Els prions funcionals constitueixen una classe particular d'amiloides. Aquestes proteïnes transmissibles presenten una arquitectura modular, amb un domini prió desordenat responsable del assemblatge i d'un o més dominis globulars que proporcionen l'activitat. És important destacar que la proteïna globular original es pot substituir per qualsevol proteïna d'interès, sense comprometre el potencial de fibril·lació. Aquestes fusions genètiques formen fibres en les quals el domini global roman plegat, formant nanoestructures funcionals. Tot i això, en molts casos, els impediments estèrics poden restringir l'activitat d'aquestes fibres. Aquesta limitació es pot solucionar disseccionant els dominis priònics en seqüències més curtes que mantenen les seves propietats d'auto-assemblatge alhora que permeten un millor accés a la proteïna en estat fibril·lar. En aquesta tesi doctoral, vam aprofitar el "soft amyloid core" (SAC) del prió de llevat Sup35p com una unitat de muntatge modular, que recapitula la propensió a l'agregació del domini priònic complet. Vam fusionar el SAC amb diferents proteïnes globulars d'interès que difereixen en la conformació i la mida, creant un mètode genètic general i senzill per generar nanofibres dotades de les funcionalitats desitjades. El modelatge computacional ens va permetre conèixer la relació entre la mida dels dominis globulars i la longitud del enllaç que els connecta al SAC, proporcionant les bases per al disseny de nanomaterials amb diferents propietats mesoscòpiques, ja siguin nanofibres o nanopartícules. Sobre aquesta base, hem dissenyat i produït, per primera vegada, nanopartícules amiloides esfèriques altament actives, no tòxiques, de mida definida, i s'han produït nanoestructures bifuncionals amb aplicació en el subministrament específic de fàrmacs. Les lliçons apreses en aquests exercicis van donar lloc a la construcció d'una nanofibrilla similar a un anticòs biespecífic amb potencial per la immunoteràpia. En resum, els nanomaterials funcionals de tipus priònic descrits aquí aprofiten l'enfocament de la fusió genètica per crear un nou conjunt d'estructures amb aplicacions en biomedicina i biotecnologia.
Resum: Los amiloides muestran una estructura fibrilar altamente ordenada. Muchos de estos ensamblajes aparecen asociados a enfermedades humanas. No obstante, la naturaleza controlable, estable, modulable y robusta de las fibras amiloides se puede emplear para construir nanomateriales notables con una amplia gama de aplicaciones. Los priones funcionales constituyen una clase particular de amiloides. Estas proteínas transmisibles exhiben una arquitectura modular, con un dominio priónico desordenado responsable del ensamblaje y uno o más dominios globulares que dan cuenta de la actividad. Cabe destacar que la proteína globular original se puede reemplazar con cualquier proteína de interés sin comprometer el potencial de fibrilación. Estas fusiones genéticas forman fibrillas en las que el dominio globular permanece plegado, lo que genera nanoestructuras funcionales. Sin embargo, en muchos casos, el impedimento estérico restringe la actividad de estas fibrillas. Esta limitación puede resolverse diseccionando los dominios de priones en secuencias más cortas que mantengan sus propiedades de autoensamblado mientras permiten un mejor acceso a la proteína en el estado fibrilar. En esta tesis doctoral, exploramos el "soft amyloid core" (SAC) del prion de levadura Sup35p como una unidad modular de autoensamblaje, que recapitula la propensión a la agregación del dominio priónico completo. Fusionamos el SAC con diferentes proteínas globulares de interés que difieren en conformación y tamaños, creando un enfoque genético general y directo para generar nanofibrillas dotadas de las funcionalidades deseadas. El modelado computacional nos permitió obtener información sobre la relación entre el tamaño de los dominios globulares y la longitud del conector que los une con el SAC, proporcionando la base para el diseño de nanomateriales con diferentes propiedades mesoscópicas, ya sean nanofibrillas o nanopartículas. Sobre esta base, diseñamos y producimos, por primera vez, nanopartículas amiloides esféricas, altamente activas, no tóxicas, de tamaño definido, y diseñamos nanoestructuras bifuncionales con aplicación en la administración dirigida de fármacos. Las lecciones aprendidas en estos ejercicios permitieron la construcción de una nanofibrilla similar a un anticuerpo biespecífico con potencial para su uso en inmunoterapia. En resumen, los nanomateriales funcionales similares a los priones descritos aquí aprovechan la metodología de fusión genética para generar un nuevo conjunto de estructuras con aplicación en biomedicina y biotecnología.
Resum: Amyloids display a highly ordered fibrillar structure. Many of these assemblies appear associated with human disease. However, the controllable, stable, tunable, and robust nature of amyloid fibrils can be exploited to build up remarkable nanomaterials with a wide range of applications. Functional prions constitute a particular class of amyloids. These transmissible proteins exhibit a modular architecture, with a disordered prion domain responsible for the assembly and one or more globular domains that account for the activity. Importantly, the original globular protein can be replaced with any protein of interest, without compromising the fibrillation potential. These genetic fusions form fibrils in which the globular domain remains folded, rendering functional nanostructures. However, in many cases, steric hindrance restricts the activity of these fibrils. This limitation can be solved by dissecting prion domains into shorter sequences that keep their self-assembling properties while allowing better access to the protein in the fibrillar state. In this PhD thesis, we exploited the "soft amyloid core (SAC)" of the Sup35p yeast prion as a modular self-assembling unit, which recapitulates the aggregation propensity of the complete prion domain. We fused the SAC to different globular proteins of interest differing in conformation and sizes, building up a general and straightforward genetic approach to generate nanofibrils endowed with desired functionalities. Computational modeling allowed us to gain insights into the relationship between the size of the globular domains and the length of the linker that connects them to the SAC, providing the basis for the design of nanomaterials with different mesoscopic properties, either nanofibrils or nanoparticles. On this basis, we designed and produced, for the first time, highly active, non-toxic, spherical amyloid nanoparticles of defined size and engineered bifunctional nanostructures with application in targeted drug delivery. The lessons learned in these exercises resulted in the construction of a bispecific antibody-like nanofibril, showing potential in immunotherapy. In summary, the prion-like functional nanomaterials described here take profit of the genetic fusion approach to render a novel set of structures with application in biomedicine and biotechnology.
Drets: Tots els drets reservats.
Llengua: Anglès
Col·lecció: Programa de Doctorat en Bioquímica, Biologia Molecular i Biomedicina
Document: Tesi doctoral ; Text ; Versió publicada
Matèria: Prions ; Priones ; Prion ; Nanomaterials ; Nanomateriales ; Auto muntatge ; Autoensamblaje ; Self-assembly ; Ciències de la Salut

Adreça alternativa: https://hdl.handle.net/10803/670982


221 p, 7.9 MB

El registre apareix a les col·leccions:
Documents de recerca > Tesis doctorals

 Registre creat el 2021-06-01, darrera modificació el 2022-09-03



   Favorit i Compartir