Web of Science: 3 citas, Scopus: 4 citas, Google Scholar: citas
The unilateral spatial autogressive process for the regular lattice two-dimensional spatial discrete data
Chutoo, Azmi
Karlis, Dimitris
Khan, Naushad Mamode
Jowaheer, Vandna

Fecha: 2021
Resumen: This paper proposes a generalized framework to analyze spatial count data under a unilateral regular lattice structure based on thinning type models. We start from the simple spatial integer-valued auto-regressive model of order 1. We extend this model in certain directions. First, we consider various distributions as choices for the innovation distribution to allow for additional overdispersion. Second, we allow for use of covariate information, leading to a non-stationary model. Finally, we derive and use other models related to this simple one by considering simplification on the existing model. Inference is based on conditional maximum likelihood approach. We provide simulation results under different scenarios to understand the behaviour of the conditional maximum likelihood. A real data application is also provided. Remarks on how the results extend to other families of models are also given.
Derechos: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Lengua: Anglès
Documento: Article ; recerca ; Versió publicada
Materia: Unilateral ; Spatial ; Regular ; Lattice ; Thinning
Publicado en: SORT : statistics and operations research transactions, Vol. 45 Núm. 1 (January-June 2021) , p. 67-90 (Articles) , ISSN 2013-8830

Adreça alternativa: https://raco.cat/index.php/SORT/article/view/388833
DOI: 10.2436/20.8080.02.110


24 p, 385.0 KB

El registro aparece en las colecciones:
Artículos > Artículos publicados > SORT
Artículos > Artículos de investigación

 Registro creado el 2021-06-19, última modificación el 2023-10-08



   Favorit i Compartir