Google Scholar: citations
Magneto-ionics in single-layer transition metal nitrides
de Rojas, Julius (Universitat Autònoma de Barcelona. Departament de Física)
Salguero, Joaquín (Consejo Superior de Investigaciones Científicas (Espanya).Instituto de Micro y Nanotecnología)
Ibrahim, Fatima (Université de Grenoble Alpes)
Chshiev, Mairbek (Université de Grenoble Alpes)
Quintana Puebla, Alberto (Georgetown University. Department of Physics)
Lopeandía Fernández, Aitor (Institut Català de Nanociència i Nanotecnologia)
Liedke, Maciej O. (Helmholtz-Zentrum Dresden−Rossendorf. Institute of Radiation Physics)
Butterling, Maik (Helmholtz-Zentrum Dresden−Rossendorf. Institute of Radiation Physics)
Hirschmann, Eric (Helmholtz-Zentrum Dresden−Rossendorf. Institute of Radiation Physics)
Wagner, Andreas (Helmholtz-Zentrum Dresden−Rossendorf. Institute of Radiation Physics)
Abad, Llibertat (Institut de Microelectrònica de Barcelona)
Costa-Krämer, José L. (Consejo Superior de Investigaciones Científicas (Espanya).Instituto de Micro y Nanotecnología)
Menéndez Dalmau, Enric (Universitat Autònoma de Barcelona. Departament de Física)
Sort Viñas, Jordi (Universitat Autònoma de Barcelona. Departament de Física)

Date: 2021
Abstract: Magneto-ionics allows for tunable control of magnetism by voltage-driven transport of ions, traditionally oxygen or lithium and, more recently, hydrogen, fluorine, or nitrogen. Here, magneto-ionic effects in single-layer iron nitride films are demonstrated, and their performance is evaluated at room temperature and compared with previously studied cobalt nitrides. Iron nitrides require increased activation energy and, under high bias, exhibit more modest rates of magneto-ionic motion than cobalt nitrides. Ab initio calculations reveal that, based on the atomic bonding strength, the critical field required to induce nitrogen-ion motion is higher in iron nitrides (≈6. 6 V nm -1) than in cobalt nitrides (≈5. 3 V nm -1). Nonetheless, under large bias (i. e. , well above the magneto-ionic onset and, thus, when magneto-ionics is fully activated), iron nitride films exhibit enhanced coercivity and larger generated saturation magnetization, surpassing many of the features of cobalt nitrides. The microstructural effects responsible for these enhanced magneto-ionic effects are discussed. These results open up the potential integration of magneto-ionics in existing nitride semiconductor materials in view of advanced memory system architectures.
Grants: European Commission 648454
European Commission 875018
Agencia Estatal de Investigación MAT2017-86357-C3-1-R
Ministerio de Economía y Competitividad RYC-2013-12640
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-292
Agència de Gestió d'Ajuts Universitaris i de Recerca 2018/LLAV-00032
Note: Altres ajuts: acords transformatius de la UAB
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Voltage control of magnetism ; Magneto-ionics ; Electrolyte gating ; Transition metals ; Metal nitrides ; Nitrogen ions ; Open volume defects ; Positron annihilation spectroscopy
Published in: ACS applied materials & interfaces, Vol. 13, issue 26 (July 2021) , p. 30826-30834, ISSN 1944-8252

DOI: 10.1021/acsami.1c06138
PMID: 34156228


9 p, 2.6 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Group of Smart Nanoengineered Materials, Nanomechanics and Nanomagnetism (Gnm3) > SPIN-PORICS
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2022-01-11, last modified 2024-02-16



   Favorit i Compartir