Web of Science: 70 citations, Scopus: 89 citations, Google Scholar: citations,
Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis
Salvador, Raymond (Centro de Investigación Biomédica en Red de Salud Mental)
Radua, Joaquim (Karolinska Institutet. Department of Clinical Neuroscience (Estocolm, Suècia))
Canales-Rodriguez, Erick Jorge (Centro de Investigación Biomédica en Red de Salud Mental)
Solanes, Aleix (Universitat de Barcelona)
Sarró, Salvador (Centro de Investigación Biomédica en Red de Salud Mental)
Goikolea Alberdi, Jose Manuel (Institut d'Investigacions Biomèdiques August Pi i Sunyer)
Valiente, Alicia (Hospital Benito Menni (Sant Boi de Llobregat, Barcelona))
Monté, Gemma C. (Institut d'Investigacions Biomèdiques August Pi i Sunyer)
Natividad, María del Carmen (Hospital Mare de Déu de la Mercè (Barcelona, Catalunya))
Guerrero-Pedraza, Amalia (Hospital Benito Menni (Sant Boi de Llobregat, Barcelona))
Moro, Noemí (Hospital Benito Menni (Sant Boi de Llobregat, Barcelona))
Fernández-Corcuera, Paloma (Hospital Benito Menni (Sant Boi de Llobregat, Barcelona))
Amann, Benedikt L. (Universitat Autònoma de Barcelona. Departament de Psiquiatria i de Medicina Legal)
Maristany, Teresa (Hospital Sant Joan de Déu (Esplugues de Llobregat, Catalunya))
Vieta, Eduard (Institut d'Investigacions Biomèdiques August Pi i Sunyer)
McKenna, Peter J. (Centro de Investigación Biomédica en Red de Salud Mental)
Pomarol-Clotet, Edith (Centro de Investigación Biomédica en Red de Salud Mental)

Date: 2017
Abstract: A relatively large number of studies have investigated the power of structural magnetic resonance imaging (sMRI) data to discriminate patients with schizophrenia from healthy controls. However, very few of them have also included patients with bipolar disorder, allowing the clinically relevant discrimination between both psychotic diagnostics. To assess the efficacy of sMRI data for diagnostic prediction in psychosis we objectively evaluated the discriminative power of a wide range of commonly used machine learning algorithms (ridge, lasso, elastic net and L0 norm regularized logistic regressions, a support vector classifier, regularized discriminant analysis, random forests and a Gaussian process classifier) on main sMRI features including grey and white matter voxel-based morphometry (VBM), vertex-based cortical thickness and volume, region of interest volumetric measures and wavelet-based morphometry (WBM) maps. All possible combinations of algorithms and data features were considered in pairwise classifications of matched samples of healthy controls (N = 127), patients with schizophrenia (N = 128) and patients with bipolar disorder (N = 128). Results show that the selection of feature type is important, with grey matter VBM (without data reduction) delivering the best diagnostic prediction rates (averaging over classifiers: schizophrenia vs. healthy 75%, bipolar disorder vs. healthy 63% and schizophrenia vs. bipolar disorder 62%) whereas algorithms usually yielded very similar results. Indeed, those grey matter VBM accuracy rates were not even improved by combining all feature types in a single prediction model. Further multi-class classifications considering the three groups simultaneously made evident a lack of predictive power for the bipolar group, probably due to its intermediate anatomical features, located between those observed in healthy controls and those found in patients with schizophrenia. Finally, we provide MRIPredict (), a free tool for SPM, FSL and R, to easily carry out voxelwise predictions based on VBM images.
Grants: Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-1573
Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-398
Ministerio de Economía y Competitividad CPII13/00018
Ministerio de Economía y Competitividad PI14/01151
Ministerio de Economía y Competitividad PI14/01148
Ministerio de Economía y Competitividad PI14/00292
Ministerio de Economía y Competitividad CP14/00041
Ministerio de Economía y Competitividad PI14/01691
Ministerio de Economía y Competitividad PI15/00277
Note: Altres ajuts: Miguel Servet Research Contracts (MS14/00041 to JR, CES12/024 to BA and MS10/00596 to EP-C).
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Published in: PloS one, Vol. 12 (april 2017) , ISSN 1932-6203

DOI: 10.1371/journal.pone.0175683
PMID: 28426817


24 p, 4.2 MB

The record appears in these collections:
Articles > Research articles
Articles > Published articles

 Record created 2022-02-07, last modified 2026-02-11



   Favorit i Compartir