Web of Science: 23 citations, Scopus: 26 citations, Google Scholar: citations
Coherent millennial-scale patterns in Uk'37 and TEX86H temperature records during the penultimate interglacial-to-glacial cycle in the western Mediterranean
Huguet, Carme (Huguet Micheo) (Universitat Autònoma de Barcelona. Institut de Ciència i Tecnologia Ambientals)
Martrat, Belén (Instituto de Diagnóstico Ambiental y Estudios del Agua)
Grimalt Obrador, Joan (Institut de Diagnosi Ambiental i Estudis de l'Aigua)
Sinninghe Damsté, Jaap S. (Royal Netherlands Institute for Sea Research. Department of Marine Organic Biogeochemistry)
Schouten, Stefan (Royal Netherlands Institute for Sea Research. Department of Marine Organic Biogeochemistry)

Date: 2011
Abstract: The TEX86H temperature proxy is a relatively new proxy based on crenarchaeotal lipids and has rarely been applied together with other temperature proxies. In this study, we applied the TEX86H on a sediment core from the Alboran Sea (western Mediterranean, core ODP-977A) covering the penultimate climate cycle, that is, from 244 to 130 ka, and compared this with previously published sea surface temperatures derived from the U37k′ of alkenones of haptophyta and Mg/Ca records of planktonic foraminifera. The TEX86H temperature record shows remarkably similar stadial-interstadial patterns and abrupt temperature changes to those observed with the U37k′ palaeothermometer. Absolute TEX86H temperature estimates are generally higher than those of U37k′, though this difference (<3°C in 81% of the data points) is mainly within the temperature calibration error for both proxies, suggesting that crenarchaeota and haptophyta experienced similar temperature variations. During occasional events (<5% of the analyzed time span), however, the TEX86H exhibits considerably higher absolute temperature estimates than the U37k′. Comparison with Mg/Ca records of planktonic foraminifera as well as other Mediterranean TEX86 and U37k′ records suggests that part of this divergence may be attributed to seasonal differences, that is, with TEX86H reflecting mainly the warm summer season while U37k′ would show annual mean. Biases in the global calibration of both proxies or specific biases in the Mediterranean are an alternative, though less likely, explanation. Despite differences between absolute TEX86H and U37k′ temperatures, the correlation between the two proxies (r2 = 0. 59, 95% significance) provides support for the occurrence of abrupt temperature variations in the western Mediterranean during the penultimate interglacial-to-glacial cycle.
Note: Número d'acord de subvenció MINECO/CSD2007-00067
Note: Número d'acord de subvenció AGAUR/2009/SGR-1178
Note: Número d'acord de subvenció AGAUR/2009/SGR-1305
Rights: Tots els drets reservats.
Language: Anglès.
Document: article ; publishedVersion
Subject: Paleoclimatologia ; Meteorologia marina
Published in: Paleoceanography, Vol. 26, Issue 2 (June 2011) , ISSN 0883-8305

DOI: 10.1029/2010PA002048

10 p, 2.5 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (scientific output) > Experimental sciences > Institut de Ciència i Tecnologia Ambientals (ICTA)
Articles > Published articles

 Record created 2008-04-21, last modified 2020-02-27

   Favorit i Compartir