| Home > Articles > Published articles > Highly Aligned Bacterial Nanocellulose Films Obtained During Static Biosynthesis in a Reproducible and Straightforward Approach |
| Date: | 2022 |
| Abstract: | Bacterial nanocellulose (BNC) is usually produced as randomly-organized highly pure cellulose nanofibers films. Its high water-holding capacity, porosity, mechanical strength, and biocompatibility make it unique. Ordered structures are found in nature and the properties appearing upon aligning polymers fibers inspire everyone to achieve highly aligned BNC (A-BNC) films. This work takes advantage of natural bacteria biosynthesis in a reproducible and straightforward approach. Bacteria confined and statically incubated biosynthesized BNC nanofibers in a single direction without entanglement. The obtained film is highly oriented within the total volume confirmed by polarization-resolved second-harmonic generation signal and Small Angle X-ray Scattering. The biosynthesis approach is improved by reusing the bacterial substrates to obtain A-BNC reproducibly and repeatedly. The suitability of A-BNC as cell carriers is confirmed by adhering to and growing fibroblasts in the substrate. Finally, the thermal conductivity is evaluated by two independent approaches, i. e. , using the well-known 3 ω -method and a recently developed contactless thermoreflectance approach, confirming a thermal conductivity of 1. 63 W mK -1 in the direction of the aligned fibers versus 0. 3 W mK -1 perpendicularly. The fivefold increase in thermal conductivity of BNC in the alignment direction forecasts the potential of BNC-based devices outperforming some other natural polymer and synthetic materials. Bacteria confined and statically incubated for a few days biosynthesized bacterial nanocellulose (BNC) nanofibers in a single direction without entanglement. The obtained film is highly oriented within the total volume of the film, and it shows a five-fold increase in thermal conductivity in the parallel direction forecasting the potential of BNC-based devices outperforming some other natural polymer and synthetic materials. |
| Grants: | Agencia Estatal de Investigación RTI2018-096273-B-I00 Ministerio de Ciencia e Innovación PID2021-122645O-BI00 Agencia Estatal de Investigación PID2019-104228RB-I00 Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-765 Ministerio de Economía y Competitividad SEV-2015-0496 Ministerio de Economía y Competitividad CEX2019-000917-S Agencia Estatal de Investigación PID2020-119777GB-I00 |
| Rights: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió publicada |
| Subject: | Aligned fibers ; Anisotropy ; Bacterial nanocellulose ; Biofabrication ; Bioinspiration ; Hydrogels ; Nanomaterials ; Sustainability ; Thermal conductivity |
| Published in: | Advanced science, Vol. 9, Issue 26 (September 2022) , art. 2201947, ISSN 2198-3844 |
14 p, 9.8 MB |