Web of Science: 14 citas, Scopus: 14 citas, Google Scholar: citas,
Pd2Ga nanorods as highly active bifunctional catalysts for electrosynthesis of acetic acid coupled with hydrogen production
Wang, Qiuxia (Jiangsu University. Institute for Energy Research)
Liu, Junfeng (Jiangsu University. Institute for Energy Research)
Li, Tong (Jiangsu University. Institute for Energy Research)
Zhang, Ting (Institut Català de Nanociència i Nanotecnologia)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Yan, Suxia (Jiangsu University. Institute for Energy Research)
Wang, Yong (Jiangsu University. Institute for Energy Research)
Li, Huaming (Jiangsu University. Institute for Energy Research)
Cabot, Andreu (Institució Catalana de Recerca i Estudis Avançats)

Fecha: 2022
Resumen: The production of hydrogen from water splitting is hampered by the sluggish oxygen evolution reaction (OER). To overcome the OER limitation, herein we propose the electrosynthesis of value-added acetic acid from ethanol as the anodic reaction using high activity catalyts. For this strategy to be cost-effective, we develop a bifunctional catalyst based on PdGa nanorods. Such PdGa/C-based catalyst presents outstanding activity, selectivity and also stability for the electrocatalytic ethanol-to-acetic acid conversion with a current density above 164 mA cm and a mass activity of 1. 97 A mg . Besides, its activity for hydrogen production is comparable to that of commercial Pt/C catalysts. Using PdGa/C as a bifunctional catalyst for both water reduction at the cathode and ethanol oxidation at the anode, these two coupled reactions are demonstrated to be an energy-efficient approach for the simultaneous production of high purity acetic acid and hydrogen. The assembled electrolyzer requires a small voltage input of 0. 62 V to reach a current density of 10 mA cm, much lower than that of cells based on commercial Pt/C or Pd/C catalyst. Density functional theory calculations reveal that the high performance of the coupled system relies on a combination of an electronic and bifunctional effect of Ga, reducing the hydrogen-binding energy on the Pd site and at the same time actively participating in the reaction by providing OH binding sites and reducing the energy barrier of the ethanol oxidation rate-determining step.
Ayudas: Ministerio de Ciencia e Innovación PID2020-116093RB-C43
Ministerio de Economía y Competitividad SEV-2017-0706
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-327
Nota: Altres ajuts: ICN2 is funded by the CERCA Programme/Generalitat de Catalunya. This study was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and Generalitat de Catalunya.
Derechos: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Lengua: Anglès
Documento: Article ; recerca ; Versió sotmesa a revisió
Materia: Palladium gallium ; Coupled system ; Ethanol oxidation reaction ; Hydrogen production ; Electrocatalysis
Publicado en: Chemical engineering journal, Vol. 446, part 1 (Oct. 2022) , art. 136878, ISSN 1873-3212

DOI: 10.1016/j.cej.2022.136878


Preprint
27 p, 1.9 MB

El registro aparece en las colecciones:
Documentos de investigación > Documentos de los grupos de investigación de la UAB > Centros y grupos de investigación (producción científica) > Ciencias > Institut Català de Nanociència i Nanotecnologia (ICN2)
Artículos > Artículos de investigación
Artículos > Artículos publicados

 Registro creado el 2023-01-24, última modificación el 2024-03-10



   Favorit i Compartir