Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers
Garrido-Giménez, Carmen 
(Universitat Autònoma de Barcelona. Departament de Pediatria, Obstetrícia i Ginecologia i de Medicina Preventiva i Salut Pública)
Cruz-Lemini, Monica 
(Universitat Autònoma de Barcelona. Departament de Pediatria, Obstetrícia i Ginecologia i de Medicina Preventiva i Salut Pública)
Álvarez Menéndez, Francisco V. 
(Hospital Universitario Central de Asturias)
Nan, Madalina Nicoleta (Institut d'Investigació Biomèdica Sant Pau)
Carretero, Francisco (Universidad de Oviedo)
Fernández-Oliva, Antonio 
(Institut d'Investigació Biomèdica Sant Pau)
Mora, Josefina
(Institut d'Investigació Biomèdica Sant Pau)
Sánchez-García, Olga (Institut d'Investigació Biomèdica Sant Pau)
García Osuna, Álvaro
(Universitat Autònoma de Barcelona. Departament de Bioquímica i de Biologia Molecular)
Alijotas-Reig, Jaume
(Universitat Autònoma de Barcelona. Departament de Medicina)
Llurba, E
(Universitat Autònoma de Barcelona. Departament de Pediatria, Obstetrícia i Ginecologia i de Medicina Preventiva i Salut Pública)
| Fecha: |
2023 |
| Resumen: |
N-terminal pro-brain natriuretic peptide (NT-proBNP) and uric acid are elevated in pregnancies with preeclampsia (PE). Short-term prediction of PE using angiogenic factors has many false-positive results. Our objective was to validate a machine-learning model (MLM) to predict PE in patients with clinical suspicion, and evaluate if the model performed better than the sFlt-1/PlGF ratio alone. A multicentric cohort study of pregnancies with suspected PE between 24 +0 and 36 +6 weeks was used. The MLM included six predictors: gestational age, chronic hypertension, sFlt-1, PlGF, NT-proBNP, and uric acid. A total of 936 serum samples from 597 women were included. The PPV of the MLM for PE following 6 weeks was 83. 1% (95% CI 78. 5-88. 2) compared to 72. 8% (95% CI 67. 4-78. 4) for the sFlt-1/PlGF ratio. The specificity of the model was better; 94. 9% vs. 91%, respectively. The AUC was significantly improved compared to the ratio alone [0. 941 (95% CI 0. 926-0. 956) vs. 0. 901 (95% CI 0. 880-0. 921), p < 0. 05]. For prediction of preterm PE within 1 week, the AUC of the MLM was 0. 954 (95% CI 0. 937-0. 968); significantly greater than the ratio alone [0. 914 (95% CI 0. 890-0. 934), p < 0. 01]. To conclude, an MLM combining the sFlt-1/PlGF ratio, NT-proBNP, and uric acid performs better to predict preterm PE compared to the sFlt-1/PlGF ratio alone, potentially increasing clinical precision. |
| Ayudas: |
Instituto de Salud Carlos III PI19/00702 Ministerio de Economía y Competitividad RD16/0022/0015 Ministerio de Economía y Competitividad PT13/0002/0028
|
| Derechos: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original.  |
| Lengua: |
Anglès |
| Documento: |
Article ; recerca ; Versió publicada |
| Materia: |
Angiogenic factors ;
Machine-learning ;
N-terminal pro-brain natriuretic peptide (NT-proBNP) ;
Placental growth factor (PlGF) ;
Prediction ;
Preeclampsia ;
Soluble fms-like tyrosine kinase 1 (sFlt-1) ;
Uric acid |
| Publicado en: |
Journal of clinical medicine, Vol. 12 (january 2023) , ISSN 2077-0383 |
DOI: 10.3390/jcm12020431
PMID: 36675361
El registro aparece en las colecciones:
Artículos >
Artículos de investigaciónArtículos >
Artículos publicados
Registro creado el 2023-01-26, última modificación el 2025-05-02