Web of Science: 30 citations, Scopus: 30 citations, Google Scholar: citations,
Electron cooling in graphene enhanced by plasmon-hydron resonance
Yu, Xiaoqing (Max Planck Institute for Polymer Research)
Principi, Alessandro (University of Manchester. School of Physics and Astronomy)
Tielrooij, Klaas-Jan (Institut Català de Nanociència i Nanotecnologia)
Bonn, Mischa (Max Planck Institute for Polymer Research)
Kavokine, Nikita (Flatiron Institute. Center for Computational Quantum Physics)

Date: 2023
Abstract: Evidence is accumulating for the crucial role of a solid's free electrons in the dynamics of solid-liquid interfaces. Liquids induce electronic polarization and drive electric currents as they flow; electronic excitations, in turn, participate in hydrodynamic friction. Yet, the underlying solid-liquid interactions have been lacking a direct experimental probe. Here we study the energy transfer across liquid-graphene interfaces using ultrafast spectroscopy. The graphene electrons are heated up quasi-instantaneously by a visible excitation pulse, and the time evolution of the electronic temperature is then monitored with a terahertz pulse. We observe that water accelerates the cooling of the graphene electrons, whereas other polar liquids leave the cooling dynamics largely unaffected. A quantum theory of solid-liquid heat transfer accounts for the water-specific cooling enhancement through a resonance between the graphene surface plasmon mode and the so-called hydrons-water charge fluctuations-particularly the water libration modes, which allows for efficient energy transfer. Our results provide direct experimental evidence of a solid-liquid interaction mediated by collective modes and support the theoretically proposed mechanism for quantum friction. They further reveal a particularly large thermal boundary conductance for the water-graphene interface and suggest strategies for enhancing the thermal conductivity in graphene-based nanostructures. Ultrafast spectroscopy experiments demonstrate that graphene electrons can transfer energy directly to liquid water with no mediation from the crystal lattice as their collective plasmon oscillation excites water's molecular charge fluctuations.
Grants: European Commission 873028
European Commission 804349
Agencia Estatal de Investigación PID2019-111673GB-I00
Agencia Estatal de Investigación RYC-2017-22330
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Electronic properties and devices ; Surfaces, interfaces and thin films
Published in: Nature Nanotechnology, Vol. 18, Issue 8 (August 2023) , p. 898-904, ISSN 1748-3395

DOI: 10.1038/s41565-023-01421-3
PMID: 37349505


8 p, 1.5 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2023-10-11, last modified 2023-10-22



   Favorit i Compartir