Web of Science: 4 citas, Scopus: 6 citas, Google Scholar: citas,
Ga and Zn increase the oxygen affinity of Cu-based catalysts for the CO hydrogenation according to ab initio atomistic thermodynamics
Müller, Andreas (ETH Zürich)
Comas-Vives, Aleix (Universitat Autònoma de Barcelona. Departament de Química)
Copéret, Christophe (ETH Zürich)

Fecha: 2022
Resumen: The direct hydrogenation of CO or CO to methanol, a highly vivid research area in the context of sustainable development, is typically carried out with Cu-based catalysts. Specific elements (so-called promoters) improve the catalytic performance of these systems under a broad range of reaction conditions (from pure CO to pure CO). Some of these promoters, such as Ga and Zn, can alloy with Cu and their role remains a matter of debate. In that context, we used periodic DFT calculations on slab models and ab initio thermodynamics to evaluate both metal alloying and surface formation by considering multiple surface facets, different promoter concentrations and spatial distributions as well as adsorption of several species (O*, H*, CO* and ) for different gas phase compositions. Both Ga and Zn form an fcc-alloy with Cu due to the stronger interaction of the promoters with Cu than with themselves. While the Cu-Ga-alloy is more stable than the Cu-Zn-alloy at low promoter concentrations (<25%), further increasing the promoter concentration reverses this trend, due to the unfavoured Ga-Ga-interactions. Under CO hydrogenation conditions, a substantial amount of O* can adsorb onto the alloy surfaces, resulting in partial dealloying and oxidation of the promoters. Therefore, the CO hydrogenation conditions are actually rather oxidising for both Ga and Zn despite the large amount of H present in the feedstock. Thus, the growth of a GaO/ZnO overlayer is thermodynamically preferred under reaction conditions, enhancing CO adsorption, and this effect is more pronounced for the Cu-Ga-system than for the Cu-Zn-system. In contrast, under CO hydrogenation conditions, fully reduced and alloyed surfaces partially covered with H* and CO* are expected, with mixed CO/CO hydrogenation conditions resulting in a mixture of reduced and oxidised states. This shows that the active atmosphere tunes the preferred state of the catalyst, influencing the catalytic activity and stability, indicating that the still widespread image of a static catalyst under reaction conditions is insufficient to understand the complex interplay of processes taking place on a catalyst surface under reaction conditions, and that dynamic effects must be considered. In this article, we show that the surface state of Cu-based CO-hydrogenation catalysts with reducible promoters depends on the composition of the active atmosphere, and the surface becomes highly dynamic only for CO-containing feeds.
Ayudas: Agencia Estatal de Investigación PGC2018-100818-A-I00
Agencia Estatal de Investigación RyC-2016-19930
Derechos: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. Creative Commons
Lengua: Anglès
Documento: Article ; recerca ; Versió publicada
Publicado en: Chemical science, Vol. 13 (November 2022) , p. 13442-13458, ISSN 2041-6539

DOI: 10.1039/d2sc03107h
PMID: 36507169


17 p, 4.8 MB

El registro aparece en las colecciones:
Artículos > Artículos de investigación
Artículos > Artículos publicados

 Registro creado el 2023-10-14, última modificación el 2024-05-04



   Favorit i Compartir