| Home > Articles > Published articles > A note on Hurwitz's inequality |
| Date: | 2018 |
| Abstract: | Given a simple closed plane curve Γ of length L enclosing a compact convex set K of area F, Hurwitz found an upper bound for the isoperimetric deficit, namely L2-4πF≤π|Fe|, where Fe is the algebraic area enclosed by the evolute of Γ. In this note we improve this inequality finding strictly positive lower bounds for the deficit π|Fe|-Δ, where Δ=L2-4πF. These bounds involve either the visual angle of Γ or the pedal curve associated to K with respect to the Steiner point of K or the L2 distance between K and the Steiner disk of K. For compact convex sets of constant width Hurwitz's inequality can be improved to L2-4πF≤[Formula presented]π|Fe|. In this case we also get strictly positive lower bounds for the deficit [Formula presented]π|Fe|-Δ. For each established inequality we study when equality holds. This occurs for those compact convex sets being bounded by a curve parallel to an hypocycloid of 3, 4 or 5 cusps or the Minkowski sum of this kind of sets. |
| Grants: | Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-289 Ministerio de Economía y Competitividad MTM2015-66165-P |
| Rights: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Convex set ; Evolute ; Hypocycloid ; Isoperimetric inequality ; Pedal curve ; Visual angle |
| Published in: | Journal of mathematical analysis and applications, Vol. 458, Issue 1 (February 2018) , p. 436-451, ISSN 1096-0813 |
Postprint 15 p, 716.4 KB |