Uniformly ergodic probability measures
Galindo Pastor, Jorge (Universitat Jaume I. Departament de Matemàtiques)
Jordá, Enrique 
(Universitat Politècnica de València)
Rodríguez-Arenas, Alberto 
(Universitat Jaume I. Departament de Matemàtiques)
| Fecha: |
2024 |
| Resumen: |
Let G be a locally compact group and µ be a probability measure on G. We consider the convolution operator λ1(µ): L1(G) → L1(G) given by λ1(µ)f = µ∗f and its restriction λ 0 1 (µ) to the augmentation ideal L0 1 (G). Say that µ is uniformly ergodic if the Ces'aro means of the operator λ 0 1 (µ) converge uniformly to 0, that is, if λ 0 1 (µ) is a uniformly mean ergodic operator with limit 0, and that µ is uniformly completely mixing if the powers of the operator λ 0 1 (µ) converge uniformly to 0. We completely characterize the uniform mean ergodicity of the operator λ1(µ) and the uniform convergence of its powers, and see that there is no difference between λ1(µ) and λ 0 1 (µ) in these regards. We prove in particular that µ is uniformly ergodic if and only if G is compact, µ is adapted (its support is not contained in a proper closed subgroup of G), and 1 is an isolated point of the spectrum of µ. The last of these three conditions can actually be replaced by µ being spread out (some convolution power of µ is not singular). The measure µ is uniformly completely mixing if and only if G is compact, µ is spread out, and the only unimodular value in the spectrum of µ is 1. |
| Derechos: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Lengua: |
Anglès |
| Documento: |
Article ; recerca ; Versió publicada |
| Materia: |
Ergodic measure ;
Uniformly ergodic measure ;
Random walk ;
Mean ergodic operator ;
Uniformly mean ergodic operator ;
Convolution operator ;
Locally compact group ;
Measure algebra |
| Publicado en: |
Publicacions matemàtiques, Vol. 68 Núm. 2 (2024) , p. 593-613 (Articles) , ISSN 2014-4350 |
Adreça original: https://raco.cat/index.php/PublicacionsMatematiques/article/view/430130
El registro aparece en las colecciones:
Artículos >
Artículos publicados >
Publicacions matemàtiquesArtículos >
Artículos de investigación
Registro creado el 2024-07-05, última modificación el 2025-03-23