Google Scholar: citas
Enhanced Oxygen Evolution and Zinc-Air Battery Performance via Electronic Spin Modulation in Heterostructured Catalysts
Yang, Linlin (Universitat de Barcelona. Departament d'Enginyeria Electrònica i Biomèdica)
He, Ren (Universitat de Barcelona. Departament d'Enginyeria Electrònica i Biomèdica)
Botifoll, Marc (Institut Català de Nanociència i Nanotecnologia)
Zhang, Yongcai (Yangzhou University)
Ding, Yang (Hebei University)
Di, Chong (Hebei University)
He, Chuansheng (University of Jinan)
Xu, Ying (Hebei University)
Balcells Argemí, Lluís (Institut de Ciència de Materials de Barcelona)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Zhou, Yingtang (Zhejiang Ocean University)
Cabot i Codina, Andreu (Institució Catalana de Recerca i Estudis Avançats)

Fecha: 2024
Resumen: Beyond optimizing electronic energy levels, the modulation of the electronic spin configuration is an effective strategy, often overlooked, to boost activity and selectivity in a range of catalytic reactions, including the oxygen evolution reaction (OER). This electronic spin modulation is frequently accomplished using external magnetic fields, which makes it impractical for real applications. Herein, spin modulation is achieved by engineering Ni/MnFeO heterojunctions, whose surface is reconstructed into NiOOH/MnFeOOH during the OER. NiOOH/MnFeOOH shows a high spin state of Ni, which regulates the OH and O adsorption energy and enables spin alignment of oxygen intermediates. As a result, NiOOH/MnFeOOH electrocatalysts provide excellent OER performance with an overpotential of 261 mV at 10 mA cm. Besides, rechargeable zinc-air batteries based on Ni/MnFeO show a high open circuit potential of 1. 56 V and excellent stability for more than 1000 cycles. This outstanding performance is rationalized using density functional theory calculations, which show that the optimal spin state of both Ni active sites and oxygen intermediates facilitates spin-selected charge transport, optimizes the reaction kinetics, and decreases the energy barrier to the evolution of oxygen. This study provides valuable insight into spin polarization modulation by heterojunctions enabling the design of next-generation OER catalysts with boosted performance.
Ayudas: Agencia Estatal de Investigación PID2022-136883OB-C22
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00457
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-01581
Agencia Estatal de Investigación PID2020-116093RB-C43
Agencia Estatal de Investigación CEX2021-001214-S
Agència de Gestió d'Ajuts Universitaris i de Recerca 2020/FI-00103
Ministerio de Ciencia e Innovación CEX2019-000917-S
Agencia Estatal de Investigación PID2021-128410OB-I00
Derechos: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Lengua: Anglès
Documento: Article ; recerca ; Versió sotmesa a revisió
Materia: Electrocatalysis ; Heterostructure ; Surface reconstruction ; Spin polarization ; Oxygen evolution reaction ; Zinc-air battery
Publicado en: Advanced materials, Vol. 36, Issue 31 (August 2024) , art. 2400572, ISSN 1521-4095

DOI: 10.1002/adma.202400572


26 p, 1.8 MB

El registro aparece en las colecciones:
Documentos de investigación > Documentos de los grupos de investigación de la UAB > Centros y grupos de investigación (producción científica) > Ciencias > Institut Català de Nanociència i Nanotecnologia (ICN2)
Artículos > Artículos de investigación
Artículos > Artículos publicados

 Registro creado el 2024-10-16, última modificación el 2025-12-05



   Favorit i Compartir