Google Scholar: citations
Explorative multidimensional analysis for energy efficiency : dataviz versus clustering algorithms
Cottafava, Dario (University of Turin)
Sonetti, Giulia (Polytechnic University of Turin)
Gambino, Paolo (University of Turin)
Tartaglino, Andrea (University of Turin)

Date: 2018
Abstract: We propose a simple tool to help the energy management of a large building stock defining clusters of buildings with the same function, setting alert thresholds for each cluster, and easily recognizing outliers. The objective is to enable a building management system to be used for detection of abnormal energy use. We start reviewing energy performance indicators, and how they feed into data visualization (DataViz) tools for a large building stock, especially for university campuses. After a brief presentation of the University of Turin's building stock which represents our case study, we perform an explorative analysis based on the Multidimensional Detective approach by Inselberg, using the Scatter Plot Matrix and the Parallel Coordinates methods. The k-means clustering algorithm is then applied on the same dataset to test the hypotheses made during the explorative analysis. Our results show that DataViz techniques provide quick and user-friendly solutions for the energy management of a large stock of buildings. In particular, they help identifying clusters of buildings and outliers and setting alert thresholds for various Energy Efficiency Indices.
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Clustering algorithms ; Data visualization ; Energy efficiency indices ; Energy management ; University campus ; SDG 7 - affordable and clean energy
Published in: Energies, Vol. 11 Núm. 5 (2018) , p. 1312, ISSN 1996-1073

DOI: 10.3390/en11051312


18 p, 3.4 MB

The record appears in these collections:
Articles > Research articles
Articles > Published articles

 Record created 2025-04-30, last modified 2025-05-19



   Favorit i Compartir