Meta-MMFNet : meta-learning based multi-model fusion network for micro-expression recognition
Gong, Wenjuan 
(China University of Petroleum)
Zhang, Yue 
(China University of Petroleum)
Wang, Wei 
(Chinese Academy of Sciences. Institute of Automation)
Cheng, Peng 
(A*STAR)
Gonzàlez, Jordi 
(Universitat Autònoma de Barcelona)
| Fecha: |
2023 |
| Resumen: |
Despite its wide applications in criminal investigations and clinical communications with patients suffering from autism, automatic micro-expression recognition remains a challenging problem because of the lack of training data and imbalanced classes problems. In this study, we proposed a meta-learning based multi-model fusion network (Meta-MMFNet) to solve the existing problems. The proposed method is based on the metric-based meta-learning pipeline, which is specifically designed for few-shot learning and is suitable for model-level fusion. The frame difference and optical flow features were fused, deep features were extracted from the fused feature, and finally in the meta-learning-based framework, weighted sum model fusion method was applied for micro-expression classification. Meta-MMFNet achieved better results than state-of-the-art methods on four datasets. The code is available at https://github. com/wenjgong/meta-fusion-based-method. |
| Ayudas: |
Agencia Estatal de Investigación PID2020-120311RB-I00
|
| Derechos: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Lengua: |
Anglès |
| Documento: |
Article ; recerca ; Versió acceptada per publicar |
| Materia: |
Feature Fusion ;
Model Fusion ;
Meta-Learning ;
Micro-Expression Recognition |
| Publicado en: |
ACM transactions on multimedia computing, communications and applications, Vol. 20, issue 2 (February 2024) , art. 39, ISSN 1551-6865 |
DOI: 10.1145/3539576
El registro aparece en las colecciones:
Artículos >
Artículos de investigaciónArtículos >
Artículos publicados
Registro creado el 2025-05-17, última modificación el 2025-06-01