Electronic Structure Dimensionality of the Quantum-Critical Ferromagnet YbNi4 P2
Dai, Ji 
(ALBA Laboratori de Llum de Sincrotró)
Antezak, Alexandre 
(Centre National de la Recherche Scientifique. Université Paris-Saclay)
Broad, W. (University of Bristol. HH Wills Physics Laboratory)
Thees, Maximilian 
(Centre National de la Recherche Scientifique. Université Paris-Saclay)
Zatko, V. (Institut Català de Nanociència i Nanotecnologia)
Bouwmeester, Rosa Luca 
(University of Twente. MESA+ Institute for Nanotechnology)
Fortuna, F. (Centre National de la Recherche Scientifique. Université Paris-Saclay)
Le Fèvre, Patrick
(Centre National de la Recherche Scientifique. Université de Rennes)
Rault, J.E. (Synchrotron SOLEIL (France))
Horiba, K. (High Energy Accelerator Research Organization (KEK). Institute of Materials Structure Science (Japan))
Vyalikh, Denis
(IKERBASQUE. Basque Foundation for Science)
Kumigashira, Hiroshi
(High Energy Accelerator Research Organization (KEK). Institute of Materials Structure Science (Japan))
Kliemt, Kristin
(Goethe-Universität Frankfurt. Physikalisches Institut)
Friedemann, Sven
(University of Bristol. HH Wills Physics Laboratory)
Krellner, Cornelius
(Goethe-Universität Frankfurt. Physikalisches Institut)
Frantzeskakis, Emmanouil
(Centre National de la Recherche Scientifique. Université Paris-Saclay)
Santander-Syro, A.F.
(Centre National de la Recherche Scientifique. Université Paris-Saclay)
| Date: |
2025 |
| Abstract: |
YbNi4P2 is the first known ferromagnetic metal showing a second-order quantum phase transition. Current theoretical understanding rules out second-order ferromagnetic quantum criticality in centrosymmetric two- and three-dimensional (2D and 3D) metals. Thus, studying the electronic structure of YbNi4P2 is of prime fundamental importance. Using angle-resolved photoemission spectroscopy, we experimentally prove the existence of 1D Fermi surface contours. In addition, our results demonstrate that part of the electronic structure of YbNi4P2 is made of states of higher dimensionality, thereby bringing into question the fact that ferromagnetic quantum criticality in centrosymmetric crystals is exclusively found in 1D systems. Our experimental data show that the electronic structure of YbNi4P2 is a playground of mixed dimensionality, electron correlations, strong hybridization, and spin-orbit coupling, all of them providing new insights in understanding the origin of ferromagnetic quantum criticality. |
| Rights: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió acceptada per publicar |
| Subject: |
Centrosymmetric ;
Electronic.structure ;
Ferromagnetics ;
Ferromagnets ;
Quantum critical ;
Quantum criticality ;
Quantum-phase transition ;
Second orders ;
Two-dimensional |
| Published in: |
Physical review letters, Vol. 134, Issue 12 (March 2025) , art. 126401, ISSN 1079-7114 |
DOI: 10.1103/PhysRevLett.134.126401
The record appears in these collections:
Research literature >
UAB research groups literature >
Research Centres and Groups (research output) >
Experimental sciences >
Catalan Institute of Nanoscience and Nanotechnology (ICN2)Research literature >
UAB research groups literature >
Research Centres and Groups (research output) >
Experimental sciences >
The ALBA SynchrotronArticles >
Research articlesArticles >
Published articles
Record created 2025-06-06, last modified 2025-06-08