Web of Science: 1 citas, Scopus: 1 citas, Google Scholar: citas,
Machine learning for the rElapse risk eValuation in acute biliary pancreatitis : The deep learning MINERVA study protocol
Podda, Mauro (University of Cagliari)
Pisanu, Adolfo (University of Cagliari)
Pellino, Gianluca (Hospital Universitari Vall d'Hebron)
De Simone, Adriano (University of Naples Federico II)
Selvaggi, Lucio (Università Degli Studi Della Campania "Luigi Vanvitelli")
Murzi, Valentina (University of Cagliari)
Locci, Eleonora (University of Cagliari)
Rottoli, Matteo (Alma Mater Studiorum University of Bologna)
Calini, Giacomo (Alma Mater Studiorum University of Bologna)
Cardelli, Stefano (Alma Mater Studiorum University of Bologna)
Catena, Fausto (Bufalini Hospital)
Vallicelli, Carlo (Bufalini Hospital)
Bova, Raffaele (Bufalini Hospital)
Vigutto, Gabriele (Bufalini Hospital)
D'Acapito, Fabrizio (University of Bologna)
Ercolani, Giorgio (University of Bologna)
Solaini, Leonardo (University of Bologna)
Biloslavo, Alan (Trieste University Hospital)
Germani, Paola (Trieste University Hospital)
Colutta, Camilla (Trieste University Hospital)
Occhionorelli, Savino (Ferrara University Hospital)
Lacavalla, Domenico (Ferrara University Hospital)
Sibilla, Maria Grazia (Ferrara University Hospital)
Olmi, Stefano (Università Vita-Salute San Raffaele)
Uccelli, Matteo (San Marco Hospital GSD)
Oldani, Alberto (San Marco Hospital GSD)
Giordano, Alessio (Careggi University Hospital (Florència, Itàlia))
Guagni, Tommaso (Careggi University Hospital (Florència, Itàlia))
Perini, Davina (Careggi University Hospital (Florència, Itàlia))
Pata, Francesco (University of Calabria)
Nardo, Bruno (University of Calabria)
Paglione, Daniele (Azienda Ospedaliera Annunziata, Cosenza, Italy)
Franco, Giusi (Azienda Ospedaliera Annunziata, Cosenza, Italy)
Donadon, Matteo (University of Piemonte Orientale)
Di Martino, Marcello (University of Piemonte Orientale)
Bruzzese, Dario (University of Naples Federico II)
Pacella, Daniela (University of Naples Federico II)
Universitat Autònoma de Barcelona

Fecha: 2025
Resumen: Mild acute biliary pancreatitis (MABP) presents significant clinical and economic challenges due to its potential for relapse. Current guidelines advocate for early cholecystectomy (EC) during the same hospital admission to prevent recurrent acute pancreatitis (RAP). Despite these recommendations, implementation in clinical practice varies, highlighting the need for reliable and accessible predictive tools. The MINERVA study aims to develop and validate a machine learning (ML) model to predict the risk of RAP (at 30, 60, 90 days, and at 1-year) in MABP patients, enhancing decision-making processes. The MINERVA study will be conducted across multiple academic and community hospitals in Italy. Adult patients with a clinical diagnosis of MABP, in accordance with the revised Atlanta Criteria, who have not undergone EC during index admission will be included. Exclusion criteria encompass non-biliary aetiology, severe pancreatitis, and the inability to provide informed consent. The study involves both retrospective data from the MANCTRA-1 study and prospective data collection. Data will be captured using REDCap. The ML model will utilise convolutional neural networks (CNN) for feature extraction and risk prediction. The model includes the following steps: the spatial transformation of variables using kernel Principal Component Analysis (kPCA), the creation of 2D images from transformed data, the application of convolutional filters, max-pooling, flattening, and final risk prediction via a fully connected layer. Performance metrics such as accuracy, precision, recall, and area under the ROC curve (AUC) will be used to evaluate the model. The MINERVA study aims to address the specific gap in predicting RAP risk in MABP patients by leveraging advanced ML techniques. By incorporating a wide range of clinical and demographic variables, the MINERVA score aims to provide a reliable, cost-effective, and accessible tool for healthcare professionals. The project emphasises the practical application of AI in clinical settings, potentially reducing the incidence of RAP and associated healthcare costs.
Derechos: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Lengua: Anglès
Documento: Article ; recerca ; Versió publicada
Materia: Acute biliary pancreatitis ; Recurrence ; Hospital readmission ; Cholecystectomy ; Machine learning ; Artificial intelligence
Publicado en: World Journal of Emergency Surgery : WJES, Vol. 20, Num. 1 (March 2025) , ISSN 1749-7922

DOI: 10.1186/s13017-025-00594-7
PMID: 40033414


10 p, 2.2 MB

El registro aparece en las colecciones:
Artículos > Artículos de investigación
Artículos > Artículos publicados

 Registro creado el 2025-07-17, última modificación el 2025-09-11



   Favorit i Compartir