Analytic Uniqueness of Ball Volume Interpolation : Categorical Invariance and Universal Characterization
Ballús Santacana, Andreu 
(Universitat Autònoma de Barcelona. Departament de Filosofia)
| Date: |
2025 |
| Description: |
12 pàg. |
| Abstract: |
We show that the classical volume formula for the unit x-ball, Vx= πx/2 Γ(x/2+1) , can be characterized as the unique analytic continuation of Haar measure normalization and unit ball volumes for O(n),under principles of categorical invariance and normalization at integer dimensions. We generalize this result to the unitary and symplectic cases, formalize invariance using categorical language, and construct explicit categorical examples with functorial diagrams. This perspective positions Vx and its analogues as canonical analytic objects at the interface of analysis,representation theory,and category theory,and motivates a broader program of exploring categorical invariants for interpolated symmetry. |
| Rights: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original.  |
| Language: |
Anglès |
| Document: |
Working paper ; recerca ; Versió de l'autor |
| Subject: |
math.RT ;
math.CA ;
math.CT |
Adreça alternativa: https://arxiv.org/abs/2506.06885v1
DOI: 10.48550/arXiv.2506.06885
The record appears in these collections:
Research literature >
Working papers
Record created 2026-01-19, last modified 2026-01-19