Google Scholar: citations
Rigorous derivation of a nonlinear diffusion equation as fast-reaction limit of a continuous coagulation-fragmentation model with diffusion
Carrillo de la Plata, José Antonio (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Desvillettes, L. (École Normale Supérieure de Cachan (Cachan, França))
Fellner, K. (University of Cambridge. Department of Applied Mathematics and Theoretical Physics)
Centre de Recerca Matemàtica

Imprint: Centre de Recerca Matemàtica 2009
Description: 15 p.
Abstract: Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [CDF2], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters.
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Language: Anglès
Series: Centre de Recerca Matemàtica. Prepublicacions
Series: Prepublicacions del Centre de Recerca Matemàtica ; 887
Document: Article ; Prepublicació ; Versió de l'autor
Subject: Entropia ; Equacions no lineals ; Dualitat, Teoria de la (Matemàtica)

DOI: 10.1080/03605300903225396


15 p, 204.6 KB

The record appears in these collections:
Research literature > Preprints

 Record created 2010-04-14, last modified 2024-05-26



   Favorit i Compartir