Date: |
1997 |
Abstract: |
Some recent algorithms for nonsmooth optimization require solutions to certain piecewise quadratic programming subproblems. Two types of subproblems are considered in this paper. The first type seeks the minimization of a continuously differentiable and strictly convex piecewise quadratic function subject to linear equality constraints. We prove that a nonsmooth version of Newton's method is globally and finitely convergent in this case. The second type involves the minimization of a possibly nonconvex and nondifferentiable piecewise quadratic function over a Euclidean ball. Characterizations of the global minimizer are studied under various conditions. The results extend a classical result on the trust region problem. . |
Rights: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
Language: |
Anglès |
Document: |
Article ; recerca ; Versió publicada |
Subject: |
Newton's method ;
Nonsmooth optimization ;
Piecewise quadratic programming ;
Trust region problems |
Published in: |
Mathematical Programming, vol. 76 n. 3 (1997) p. 451-467, ISSN 0025-5610 |