Dynamical systems of type (m,n) and their C*-algebras
Ara, Pere, 1959- (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Exel, Ruy
Katsura, Takeshi
Centre de Recerca Matemàtica

Imprint: Centre de Recerca Matemàtica 2011
Description: 38 p.
Abstract: Given positive integers n and m, we consider dynamical systems in which n copies of a topological space is homeomorphic to m copies of that same space. The universal such system is shown to arise naturally from the study of a C*-algebra we denote by Om;n, which in turn is obtained as a quotient of the well known Leavitt C*-algebra Lm;n, a process meant to transform the generating set of partial isometries of Lm;n into a tame set. Describing Om;n as the crossed-product of the universal (m; n) -dynamical system by a partial action of the free group Fm+n, we show that Om;n is not exact when n and m are both greater than or equal to 2, but the corresponding reduced crossed-product, denoted Or m;n, is shown to be exact and non-nuclear. Still under the assumption that m; n >= 2, we prove that the partial action of Fm+n is topologically free and that Or m;n satisfies property (SP) (small projections). We also show that Or m;n admits no finite dimensional representations. The techniques developed to treat this system include several new results pertaining to the theory of Fell bundles over discrete groups.
Rights: L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: Creative Commons
Language: Anglès.
Series: Prepublicacions del Centre de Recerca Matemàtica
Series: Prepublicacions del Centre de Recerca Matemàtica ; 1050
Document: preprint
Subject: Sistemes dinàmics diferenciables ; Grups lliures ; C*-àlgebres

Adreça alternativa: http://hdl.handle.net/2072/182585

38 p, 488.4 KB

The record appears in these collections:
Research literature > Preprints

 Record created 2012-03-22, last modified 2017-10-21

   Favorit i Compartir