| Date: |
1997 |
| Abstract: |
We compute constrained equilibria satisfying an optimality condition. Important examples include convex programming, saddle problems, noncooperative games, and variational inequalities. Under a monotonicity hypothesis we show that equilibrium solutions can be found via iterative convex minimization. In the main algorithm each stage of computation requires two proximal steps, possibly using Bregman functions. One step serves to predict the next point; the other helps to correct the new prediction. To enhance practical applicability we tolerate numerical errors. . |
| Rights: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió publicada |
| Subject: |
Equilibrium problems ;
Convex programming ;
Saddle problems ;
Non-cooperative games ;
Variational inequalities ;
Quasi-monotonicity ;
Proximal point algorithms ;
Bregman distances |
| Published in: |
Mathematical Programming, vol. 78 n. 1 (1997) p. 29-41, ISSN 0025-5610 |