Modelling stock returns with AR-GARCH processes
Ferenstein, Elzbieta
Gasowski, Miroslaw

Date: 2004
Abstract: Financial returns are often modelled as autoregressive time series with random disturbances having conditional heteroscedastic variances, especially with GARCH type processes. GARCH processes have been intensely studying in financial and econometric literature as risk models of many financial time series. Analyzing two data sets of stock prices we try to fit AR(1) processes with GARCH or EGARCH errors to the log returns. Moreover, hyperbolic or generalized error distributions occur to be good models of white noise distributions.
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Autoregressive process ; GARCH and EGARCH models ; Conditional heteroscedastic variance ; Financial log returns
Published in: SORT : statistics and operations research transactions, Vol. 28, Núm. 1 (January-June 2004) , p. 55-68, ISSN 2013-8830

Adreça alternativa: https://raco.cat/index.php/SORT/article/view/28861


14 p, 484.3 KB

The record appears in these collections:
Articles > Published articles > SORT
Articles > Research articles

 Record created 2012-07-19, last modified 2024-05-25



   Favorit i Compartir