Analysing visual receptive fields through generalised additive models with interactions
Rodríguez-Álvarez, María Xosé
Cadarso-Suárez, Carmen
González, Francisco

Date: 2012
Abstract: Visual receptive fields (RFs) are small areas of the visual field where a stimulus induces a responses of a particular neuron from the visual system. RFs can be mapped using reverse crosscorrelation technique, which produces raw matrices containing both spatial and temporal information about the RF. Though this technique is frequently used in electrophysiological experiments, it does not allow formal comparisons between RFs obtained under different experimental conditions. In this paper we propose the use of Generalised Additive Models (GAM) including complex interactions, to obtain smoothed spatio-temporal versions of RFs. Moreover, the proposed methodology also allow for the statistical comparisons of the RFs obtained across various experimental conditions. Data analysed here derive from studies of neurons' activity in the visual cortex of behaving monkeys. Our results suggest that the GAM-based technique proposed in this paper can be a flexible and powerful tool for assessing receptive field properties.
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Language: Anglès
Document: article ; recerca ; Versió publicada
Subject: Visual receptive fields ; Reverse cross-correlation ; Visual cortex ; Smoothing ; B-splines ; P-splines ; Tensor product splines
Published in: SORT : statistics and operations research transactions, Vol. 36, Núm. 1 (January-June 2012) , p. 3-44, ISSN 2013-8830

Adreça original:

42 p, 806.0 KB

The record appears in these collections:
Articles > Published articles > SORT
Articles > Research articles

 Record created 2012-07-24, last modified 2021-06-19

   Favorit i Compartir