| Home > Articles > Published articles > On the periodic solutions of a perturbed double pendulum |
| Date: | 2011 |
| Abstract: | We provide sufficient conditions for the existence of periodic solutions of the planar perturbed double pendulum with small oscillations having equations of motion ¨θ1 = -2aθ1 + aθ2 + εF1(t, θ1, ˙θ1, θ2, ˙θ2), ¨θ2 = 2aθ1 - 2aθ2 + εF2(t, θ1, ˙θ1, θ2, ˙θ2), where a and ε are real parameters. The two masses of the unperturbed double pendulum are equal, and its two stems have the same length l. In fact a = g/l where g is the acceleration of the gravity. Here the parameter ε is small and the smooth functions F1 and F2 define the perturbation which are periodic functions in t and in resonance p:q with some of the periodic solutions of the unperturbed double pendulum, being p and q positive integers relatively prime. |
| Grants: | Ministerio de Ciencia e Innovación MTM2008-03437 Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-410 |
| Note: | Agraïments: The first and third authors are also supported by the joint project CA PES-MECD grant PHB-2009-0025-PC. The second author is partially suported by the grant FAPESP 2011/03896-0. The third author is partially supported by a FAPESP-BRAZIL grant 2007/06896-5. |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Document: | Article |
| Subject: | Periodic solution ; Double pendulum ; Averaging theory |
| Published in: | São Paulo Journal of Mathematical Sciences, Vol. 5 Núm. 2 (2011), p. 317-330, ISSN 2316-9028 |
Postprint 11 p, 153.9 KB |