2026-02-19 21:13 |
|
5 p, 1.7 MB |
Limit Cycles of Continuous-Discontinuous Piecewise Linear Hamiltonian Systems in ℝ2 Separated by the Curve y=sinx
/
Chachapoyas, N. (Universidade Federal de Itajubá. Instituto de Matemática e Computação) ;
Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ;
Meza-Sarmiento, I. S. (Universidade Federal de Itajubá. Instituto de Matemática e Computação) ;
Vidarte, J. (Universidade Federal de Itajubá. Instituto de Matemática e Computação)
These last decades piecewise differential systems have been studied intensively, mainly due to their applications. Inside the study of the dynamics of these differential systems, the limit cycles, that is, the isolated periodic orbits inside the set of all periodic orbits of the system, play a main role. [...]
2026 - 10.1002/mma.70230
Mathematical methods in the applied sciences, Vol. 49, Num. 3 (February 2026) , p. 2093-2097
|
|
2026-02-19 20:12 |
|
2026-02-19 20:12 |
|
2026-02-19 19:12 |
|
2026-02-19 18:12 |
|
2025-08-28 10:49 |
|
2025-07-28 14:24 |
|
28 p, 687.3 KB |
Quadratic vector fields in class I
/
Artés Ferragud, Joan Carles (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ;
Chen, Hebai (Central South University. School of Mathematics and Statistics (China)) ;
Ferrer, Lluc Manel (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ;
Jia, Man (Central South University. School of Mathematics and Statistics (China))
In [Ye et al. , Theory of Limit Cycles, 1986], quadratic systems are classified into three different normal forms (I, II and III) with increasing number of parameters. The simplest family is I and even several subfamilies of it have been studied, and some global attempts have been done, up to this paper, the full study was still undone. [...]
2025 - 10.1080/14689367.2024.2436223
Dynamical Systems, Vol. 40, Issue 2 (2025) , p. 191-222
|
|
2025-07-28 14:24 |
|
2025-07-28 14:24 |
|
|
On the Limit Cycles Bifurcating from the Periodic Orbits of a Hamiltonian System
/
Anacona, Gerardo H. (Universidade Federal de Goiás. Instituto de Matemática e Estatística) ;
Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ;
Freitas, Bruno (Universidade Federal de Goiás. Instituto de Matemática e Estatística)
This paper concerns the weak 16th Hilbert problem and considers the Hamiltonian center a: = -y2n-1, a: = x2n-1, and we perturb it by all polynomials of degree 2n-1 for n = 2, 3, 4, 5, 6, 7, 8. We prove that the maximum number of limit cycles that can bifurcate from the periodic orbits of this center for n = 2, 3, 4, 5, 6, 7, 8, under the mentioned perturbations and using the averaging theory of first order, is 1, 4, 3, 2, 5, 6, 7, respectively.
2025 - 10.1142/S0218127425500403
International journal of bifurcation and chaos in applied sciences and engineering, Vol. 35, Issue 4 (March 2025) , art. 2550040
|
|
2025-07-28 14:24 |
|
|
|