GSD (Dynamical systems)

Dynamical systems is, and always has been, one of the main lines of research in Mathematics. It lies in the interest of all human civilizations to understand important questions such as the movement of the planets, the evolution of populations, or the discovery of chaotic dynamics in robust deterministic systems, which is why dynamical systems has become a major goal of study. After many years of evolution, the area of dynamical systems has undergone various transformations and developed branches to provide answers to questions of diverse nature.

The interests of the Dynamical Systems Group of UAB (GSD-UAB) can be described by stating our main research lines: Celestial Mechanics, Complex Dynamics, Discrete Real Dynamical Systems and Qualitative Theory of Differential Equations.

The members of our group work mainly in Catalonian universities (UAB, UB, UdG, UPC, URV, UVIC), although some of our researchers work in other universities in Spain and abroad. GSD-UAB collaborates with various national and international research groups.

Web page: http://www.gsd.uab.cat

Usage statistics Most popular
Latest additions:
2018-11-12
13:11
7 p, 289.4 KB Limit cycles of a second-order differential equation / Chen, Ting (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
We provide an upper for the maximum number of limit cycles bifurcating from the periodic solutions of x=0, when we perturb this system as follows \ (1 ^m )Q(x,y) x=0, \] where >0 is a small parameter, m is an arbitrary non-negative integer, Q(x,y) is a polynomial of degree n and =(y/x). [...]
2019 - 10.1016/j.aml.2018.08.015
Applied mathematics letters, Vol. 88 (2019) , p. 111-117  
2018-11-12
13:11
15 p, 328.9 KB Subseries and signed series / Gasull i Embid, Armengol (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Mañosas Capellades, Francesc (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
For any positive decreasing to zero sequence a_n such that Ʃa_n diverges we consider the related series Ʃk_na_n and Ʃj_na_n. Here, k_n and j_n are real sequences such that Ʃk_nє{0,1} and j_nє{-1,1}. [...]
2019 - 10.3934/cpaa.2019024
Communications on pure & applied analysis, Vol. 18, issue 1 (Jan. 2019) , p. 479-492  
2018-11-12
13:11
25 p, 4.7 MB Convergence regions for the Chebyshev--Halley family / Campos, Beatriz (Institut Universitari de Matemàtiques i Aplicacions de Castelló) ; Canela, Jordi (Institut Universitari de Matemàtiques i Aplicacions de Castelló) ; Vindel, Pura (Institut Universitari de Matemàtiques i Aplicacions de Castelló)
In this paper, we study the dynamical behaviour of the Chebyshev--Halley family applied on a family of degree n polynomials. For n=2 we bound the set of parameters for which the iterative methods have convergence regions which do not correspond to the basins of attraction of the roots. [...]
2018 - 10.1016/j.cnsns.2017.08.024
Communications in nonlinear science and numerical simulation, Vol. 56 (March 2018) , p. 508-525  
2018-11-12
13:11
23 p, 5.9 MB Rational maps with Fatou components of arbitrarily large connectivity / Canela Sánchez, Jordi (Université Paul Sabatier. Institut de Mathématiques de Toulouse)
We study the family of singular perturbations of Blaschke products B_a,(z)=z^3-a1- ^2. We analyse how the connectivity of the Fatou components varies as we move continuously the parameter . We prove that all possible escaping configurations of the critical point c_-(a,) take place within the parameter space. [...]
2018 - 10.1016/j.jmaa.2018.01.061
Journal of mathematical analysis and applications, Vol. 462, issue 1 (June 2018) , p. 35-56  
2018-11-12
13:11
13 p, 271.6 KB Periodic orbits bifurcating from a nonisolated zero-Hopf equilibrium of three-dimensional differential systems revisited / Cândido, Murilo R. (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
In this paper, we study the periodic solutions bifurcating from a nonisolated zero–Hopf equilib- rium in a polynomial differential system of degree two in R³. More specifically, we use recent results of averaging theory to improve the conditions for the existence of one or two periodic solutions bifurcating from such a zero–Hopf equilibrium. [...]
2018 - 10.1142/S021812741850058X
International journal of bifurcation and chaos in applied sciences and engineering, Vol. 28, no. 5 (2018) , art. 1850058  
2018-11-12
13:11
29 p, 5.8 MB Zero--Hopf bifurcations in 3-dimensional differential systems with no equilibria / Cândido, Murilo R. (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
We use averaging theory for studying the Hopf and zero--Hopf bifurcations in some chaotic differential systems. These differential systems have a chaotic attractor and no equilibria. Numerically we show the relation between the existence of the periodic solutions studied in these systems and their chaotic attractors.
2018 - 10.1016/j.matcom.2018.03.008
Mathematics and computers in simulation, Vol. 151 (Sep. 2018) , p. 54-76  
2018-11-12
13:11
28 p, 448.6 KB Differential Galois theory and non-integrability of planar polynomial vector fields / Acosta-Humánez, Primitivo B. (Universidad Simón Bolívar(Colombia). Facultad de Ciencias Básicas y Biomédicas) ; Tomás Lázao, J. (Universitat Politècnica de Catalunya. Departament de Matemàtiques) ; Morales-Ruiz, Juan J. (Universidad Politécnica de Madrid. Departamento de Matemática Aplicada) ; Pantazi, Chara (Universitat Politècnica de Catalunya. Departament de Matemàtica)
We study a necessary condition for the integrability of the polynomials vector fields in the plane by means of the differential Galois Theory. More concretely, by means of the variational equations around a particular solution it is obtained a necessary condition for the existence of a rational first integral. [...]
2018 - 10.1016/j.jde.2018.02.016
Journal of differential equations, Vol. 264, issue 12 (June 2018) , p. 7183-7212  
2018-11-12
13:11
15 p, 876.8 KB Tuning the overlap and the cross-layer correlations in two-layer networks : application to an SIR model with awareness dissemination / Juher, David (Universitat de Girona. Departament d’Informàtica, Matemàtica Aplicada i Estadística) ; Saldaña, Joan (Universitat de Girona. Departament d’Informàtica, Matemàtica Aplicada i Estadística)
We study the properties of the potential overlap between two networks A,B sharing the same set of N nodes (a two-layer network) whose respective degree distributions p_A(k), p_B(k) are given. Defining the overlap coefficient as the Jaccard index, we prove that is very close to 0 when A and B are random and independently generated. [...]
2018 - 10.1103/PhysRevE.97.032303
Physical review E, Vol. 97, issue 3 (March 2018) , art. 32303  
2018-11-12
13:11
22 p, 627.8 KB Periodic points of a Landen transformation / Gasull, Armengol (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llorens, Mireia (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Mañosa, Víctor (Universitat Politècnica de Catalunya. Departament de Matemàtiques)
We prove the existence of 3-periodic orbits in a dynamical system associated to a Landen transformation previously studied by Boros, Chamberland and Moll, disproving a conjecture on the dynamics of this planar map introduced by the latter author. [...]
2018 - 10.1016/j.cnsns.2018.04.020
Communications in nonlinear science and numerical simulation, Vol. 64 (Nov. 2018) , p. 232-245  
2018-11-12
13:11
10 p, 362.5 KB A proof of Bertrand’s theorem using the theory of isochronous potentials / Ortega, Rafael (Universidad de Granada. Departamento de Matemática Aplicada) ; Rojas, David (Universidad de Granada. Departamento de Matemática Aplicada)
We give an alternative proof for the celebrated Bertrand’s theorem as a corollary of the isochronicity of a certain family of centers.
2018 - 10.1007/s10884-018-9676-9
Journal of dynamics and differential equations, Published online May 2018