GSD (Dynamical systems)

Dynamical systems is, and always has been, one of the main lines of research in Mathematics. It lies in the interest of all human civilizations to understand important questions such as the movement of the planets, the evolution of populations, or the discovery of chaotic dynamics in robust deterministic systems, which is why dynamical systems has become a major goal of study. After many years of evolution, the area of dynamical systems has undergone various transformations and developed branches to provide answers to questions of diverse nature.

The interests of the Dynamical Systems Group of UAB (GSD-UAB) can be described by stating our main research lines: Celestial Mechanics, Complex Dynamics, Discrete Real Dynamical Systems and Qualitative Theory of Differential Equations.

The members of our group work mainly in Catalonian universities (UAB, UB, UdG, UPC, URV, UVIC), although some of our researchers work in other universities in Spain and abroad. GSD-UAB collaborates with various national and international research groups.

Web page: http://www.gsd.uab.cat

Usage statistics Most popular
Latest additions:
2020-09-28
21:52
Limit cycles bifurcating of Kolmogorov systems in R2 and in R3 / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Martínez Mancilla, Yohanna Paulina (Centre de Recerca Matemàtica) ; Valls, Clàudia 1973- (Universidade de Lisboa. Instituto Superior Técnico. Departamento de Matemática)
In this work we consider the Kolmogorov system of degree 3 in R2 and R3 having an equilibrium point in the positive quadrant and octant, respectively. We provide sufficient conditions in order that the equilibrium point will be a Hopf point for the planar case and a zero-Hopf point for the spatial one. [...]
2020 - 10.1016/j.cnsns.2020.105401
Communications in nonlinear science and numerical simulation, Vol. 91 (December 2020) , art. 105401  
2020-09-28
21:32
4-dimensional zero-Hopf bifurcation for polynomial differentials systems with cubic homogeneous nonlinearities via averaging theory / Feddaoui, Amina (University of Annaba. Department of Mathematics (Algeria)) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Makhlouf, Ammar (University of Annaba. Department of Mathematics (Algeria))
The averaging theory of second order shows that for polynomial differential systems in ℝ4 with cubic homogeneous nonlinearities at least nine limit cycles can be born in a zero-Hopf bifurcation.
2020 - 10.1504/IJDSDE.2020.109106
International Journal of Dynamical Systems and Differential Equations, Vol. 10, Issue 4 (2020) , p. 321-328  
2020-09-28
17:49
30 p, 951.8 KB On the configurations of centers of planar Hamiltonian Kolmogorov cubic polynomial differential systems / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Xiao, Dongmei (Shanghai Jiao Tong University. School of Mathematical Sciences (China))
We study the kind of centers that Hamiltonian Kolmogorov cubic polynomial differential systems can exhibit. Moreover, we analyze the possible configurations of these centers with respect to the invariant coordinate axes, and obtain that the real algebraic curve xy(a+bx+cy+dx2+exy+fy2)=h has at most four families of level ovals in R2 for all real parameters a,b,c,d,e,f and h.
2020 - 10.2140/pjm.2020.306.611
Pacific Journal of Mathematics, Vol. 306, Issue 2 (2020) , p. 611-644  
2020-09-25
10:09
On the centers of cubic polynomial differential systems with four invariant straight lines / Llibre, Jaume (Universitat Autónoma de Barcelona. Departament de Matemátiques)
Assume that a cubic polynomial differential system in the plane has four invariant straight lines in generic position, i. e. they are not parallel and no more than two straight lines intersect in a point. [...]
2020 - 10.12775/TMNA.2020.004
Topological Methods in Nonlinear Analysis, Vol. 55, Issue 2 (June 2020) , p. 387-402  
2020-09-14
17:33
11 p, 320.0 KB A new algorithm for finding rational first integrals of polynomial vector fields / Ferragut, Antoni (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Giacomini, Héctor (Université de Tours. Centre National de la Recherche Scientifique. Laboratoire de Mathématique et Physique Théorique (France))
We present a new method to compute rational first integrals of planar polynomial vector fields. The algorithm is in general much faster than the usual methods and also allows to compute the remarkable curves associated to the rational first integral of the system.
2010 - 10.1007/s12346-010-0021-x
Qualitative Theory of Dynamical Systems, Vol. 9, Issue 1-2 (November 2010) , p. 89-99  
2020-09-14
17:33
Dynamics of a competitive Lotka-Volterra systems in R3 / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Martínez, Y. Paulina (Centre de Recerca Matemàtica)
We describe the dynamics of the 3-dimensional competitive Lotka-Volterra systems x˙=x(a−x−y−z), y˙=y(b−x−y−z), z˙=z(c−x−y−z), providing the phase portraits for all the values of the parameters a, b and c with 0 < a< b< c in the positive octant of the Poincaré ball.
2020 - 10.1007/s10440-020-00346-6
Acta Applicandae Mathematicae, (July 2020)  
2020-09-14
17:33
Invariant conditions for phase portraits of quadratic systems with complex conjugate invariant lines meeting at a finite point / Artés, Joan Carles (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Schlomiuk, Dana (Université de Montréal. Département de Mathématiques et de Statistiques (France)) ; Vulpe, Nicolae (Vladimir Andrunakievichi Institute of Mathematics and Computer Science (Moldova))
The goal of this article is to give invariant necessary and sufficient conditions for a quadratic system, presented in whatever normal form, to have anyone of 17 out of the 20 phase portraits of the family of quadratic systems with two complex conjugate invariant lines intersecting at a finite real point. [...]
2020 - 10.1007/s12215-020-00541-2
Rendiconti del Circolo Matematico di Palermo, (July 2020)  
2020-09-14
17:33
Stable components in the parameter plane of transcendental functions of finite type / Fagella Rabionet, Núria (Barcelona Graduate School of Mathematics (BGSMath)) ; Keen, Linda (CUNY Graduate Center (USA))
We study the parameter planes of certain one-dimensional, dynamically-defined slices of holomorphic families of entire and meromorphic transcendental maps of finite type. Our planes are defined by constraining the orbits of all but one of the singular values, and leaving free one asymptotic value. [...]
2020 - 10.1007/s12220-020-00458-3
Journal of Geometric Analysis, (July 2020)  
2020-09-14
17:33
N-dimensional zero-hopf bifurcation of polynomial differential systems via averaging theory of second order / Kassa, Sara (University of Annaba. Department of Mathematics (Algeria)) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Makhlouf, Ammar (University of Annaba. Department of Mathematics (Algeria))
Using the averaging theory of second order, we study the limit cycles which bifurcate from a zero-Hopf equilibrium point of polynomial vector fields with cubic nonlinearities in ℝn. We prove that there are at least 3n-2 limit cycles bifurcating from such zero-Hopf equilibrium points. [...]
2020 - 10.1007/s10883-020-09501-6
Journal of Dynamical and Control Systems, (June 2020)  
2020-09-14
17:33
12 p, 630.6 KB On the period function in a class of generalized Lotka-Volterra systems / Villadelprat, Jordi (Universitat de Barcelona. Departament de Matemàtica Aplicada i Anàlisi)
In this note, motivated by the recent results of Wang et al. [Wang et al. , Local bifurcations of critical periods in a generalized 2D LV system, Appl. Math. Comput. 214 (2009) 17-25], we study the behaviour of the period function of the center at the point (1,1) of the planar differential system {u' = up(1−vq),v'= μvq(up−1), where p, q, μ ∈ R with pq > 0 and μ > 0. [...]
2010 - 10.1016/j.amc.2010.03.025
Applied Mathematics and Computation, Vol. 216, Issue 7 (June 2010) , p. 1956-1964