Google Scholar: citations
Bifurcation of local critical periods in the generalized Loud's system
Villadelprat Yagüe, Jordi (Universitat de Barcelona. Departament de Matemàtica Aplicada i Anàlisi)

Date: 2012
Abstract: We study the bifurcation of local critical periods in the differential system (x˙ = -y + Bxn-1y,y˙ = x + Dxn + F xn-2y2, where B, D, F ∈ R and n > 3 is a fixed natural number. Here by "local" we mean in a neighbourhood of the center at the origin. For n even we show that at most two local critical periods bifurcate from a weak center of finite order or from the linear isochrone, and at most one local critical period from a nonlinear isochrone. For n odd we prove that at most one local critical period bifurcates from the weak centers of finite or infinite order. In addition, we show that the upper bound is sharp in all the cases. For n = 2 this was proved by Chicone and Jacobs in [Bifurcation of critical periods for plane vector fields, Trans. Amer. Math. Soc. 312 (1989) 433-486] and our proof strongly relies on their general results about the issue.
Grants: Ministerio de Economía y Competitividad MTM2008-03437
Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-410
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Subject: Center ; Period function ; Critical period ; Bifurcation
Published in: Applied Mathematics and Computation, Vol. 218 (2012) , p. 6803-6813, ISSN 1873-5649

DOI: 10.1016/j.amc.2011.12.048


Postprint
14 p, 529.4 KB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > GSD (Dynamical systems)
Articles > Research articles
Articles > Published articles

 Record created 2016-05-06, last modified 2025-10-12



   Favorit i Compartir