Upper bounds for the number of zeroes for some Abelian integrals
Gasull, Armengol (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Torregrosa, Joan (Universitat Autònoma de Barcelona. Departament de Matemàtiques)

Date: 2012
Abstract: Consider the vector field x' = -yG(x, y), y' = xG(x, y), where the set of critical points {G(x, y) = 0} is formed by K straight lines, not passing through the origin and parallel to one or two orthogonal directions. We perturb it with a general polynomial perturbation of degree n and study which is the maximum number of limit cycles that can bifurcate from the period annulus of the origin in terms of K and n. Our approach is based on the explicit computation of the Abelian integral that controls the bifurcation and in a new result for bounding the number of zeroes of a certain family of real functions. When we apply our results for K ≤ 4 we recover or improve some results obtained in several previous works.
Grants: Ministerio de Ciencia e Innovación MTM2008-03437
Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-410
Ministerio de Ciencia e Innovación MTM2009-06973
Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-859
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Document: Article
Subject: Abelian integrals ; Weak 16th Hilbert's Problem ; Limit cycles ; Chebyshev system ; Number of zeroes of real functions
Published in: Nonlinear Analysis : Theory, Methods and Applications, Vol. 75 (2012), p. 5169-5179, ISSN 0362-546X



Postprint
15 p, 386.1 KB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > GSD (Dynamical systems)
Articles > Research articles
Articles > Published articles

 Record created 2016-05-06, last modified 2026-01-05



   Favorit i Compartir