| Home > Articles > Published articles > The number of polynomial solutions of polynomial Riccati equations |
| Date: | 2016 |
| Abstract: | Consider real or complex polynomial Riccati differential equations a(x) y=b_0(x) b_1(x)y b_2(x)y^2 with all the involved functions being polynomials of degree at most . We prove that the maximum number of polynomial solutions is 1 (resp. 2) when 1 (resp. =0) and that these bounds are sharp. For real trigonometric polynomial Riccati differential equations with all the functions being trigonometric polynomials of degree at most 1 we prove a similar result. In this case, the maximum number of trigonometric polynomial solutions is 2 (resp. 3) when 2 (resp. =1) and, again, these bounds are sharp. Although the proof of both results has the same starting point, the classical result that asserts that the cross ratio of four different solutions of a Riccati differential equation is constant, the trigonometric case is much more involved. The main reason is that the ring of trigonometric polynomials is not a unique factorization domain. |
| Grants: | Ministerio de Economía y Competitividad MTM2013-40998-P Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-568 European Commission 316338 |
| Note: | Agraïments: The third author is partially supported by the NNSF of China 11271252 and the Innovation program of Shanghai Municipal Education Commission of China 15ZZ02. |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Explicit solutions ; Number of polynomial solutions ; Polynomial differential equations ; Riccati differential equations ; Trigonometric polynomial differential equations |
| Published in: | Journal of differential equations, Vol. 261 (2016) , p. 5071-5093, ISSN 1090-2732 |
Postprint 21 p, 377.6 KB |