| Home > Articles > Published articles > On the dynamics of a model with coexistence of three attractors: a point, a periodic orbit and a strange attractor |
| Date: | 2017 |
| Abstract: | For a dynamical system described by a set of autonomous differential equations, an attractor can be either a point, or a periodic orbit, or even a strange attractor. Recently a new chaotic system with only one parameter has been presented where besides a point attractor and a chaotic attractor, it also has a coexisting attractor limit cycle which makes evident the complexity of such a system. We study using analytic tools the dynamics of such system. We describe its global dynamics at infinity, and show that it has no Darboux first integrals. Additionally, we characterize its Hopf bifurcations. |
| Grants: | European Commission 318999 European Commission 316338 Ministerio de Economía y Competitividad MTM2013-40998-P Ministerio de Economía y Competitividad UNAB13-4E-1604 Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-568 |
| Note: | The second author is partially supported by FCT/Portugal through UID/MAT/04459/2013. |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Chaotic system ; Darboux integrability ; Hopf bifurcation ; Poincaré compactification |
| Published in: | Mathematical Physics, Analysis and Geometry, Vol. 20 Núm. 2 (2017) , p. 1-12, ISSN 1572-9656 |
Postprint 14 p, 310.6 KB |