| Home > Articles > Published articles > Averaging approach to cyclicity of Hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems |
| Date: | 2017 |
| Abstract: | It is well known that the cyclicity of a Hopf bifurcation in continuous quadratic polynomial differential systems in \R^2 is 3. In contrast here we consider discontinuous differential systems in \R^2 defined in two half--planes separated by a straight line. In one half plane we have a general linear center at the origin of \R^2, and in the other a general quadratic polynomial differential system having a focus or a center at the origin of \R^2. Using averaging theory, we prove that the cyclicity of a Hopf bifurcation for such discontinuous differential systems is at least 5. Our computations show that only one of the averaged functions of fifth order can produce 5 limit cycles and there are no more limit cycles up to sixth order averaged function. |
| Grants: | Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-568 European Commission 318999 Ministerio de Economía y Competitividad MTM2013-40998-P Ministerio de Economía y Competitividad MTM2016-77278-P |
| Note: | Agraïments: The first author is supported by NSFC grant #11471228. The third author is supported by NSFC grants #11231001, #11221101. |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Cyclicity ; Discontinuous differential system ; Hopf bifurcation ; Limit cycles |
| Published in: | Discrete and continuous dynamical systems. Series B, Vol. 22 Núm. 10 (2017) , p. 3953-3965, ISSN 1553-524X |
Postprint 15 p, 328.5 KB |