Rational maps with Fatou components of arbitrarily large connectivity
Canela Sánchez, Jordi 
(Université Paul Sabatier. Institut de Mathématiques de Toulouse)
| Date: |
2018 |
| Abstract: |
We study the family of singular perturbations of Blaschke products B_a,(z)=z^3-a1- ^2. We analyse how the connectivity of the Fatou components varies as we move continuously the parameter . We prove that all possible escaping configurations of the critical point c_-(a,) take place within the parameter space. In particular, we prove that there are maps B_a, which have Fatou components of arbitrarily large finite connectivity within their dynamical planes. |
| Rights: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió acceptada per publicar |
| Subject: |
Holomorphic dynamics ;
Blaschke products ;
McMullen-like Julia sets ;
Singular perturbations ;
Connectivity of Fatou components |
| Published in: |
Journal of mathematical analysis and applications, Vol. 462, issue 1 (June 2018) , p. 35-56, ISSN 1096-0813 |
DOI: 10.1016/j.jmaa.2018.01.061
The record appears in these collections:
Research literature >
UAB research groups literature >
Research Centres and Groups (research output) >
Experimental sciences >
GSD (Dynamical systems)Articles >
Research articlesArticles >
Published articles
Record created 2018-11-12, last modified 2024-11-23