| Home > Articles > Published articles > Singularities of inner functions associated with hyperbolic maps |
| Date: | 2019 |
| Abstract: | Let f be a function in the Eremenko-Lyubich class B, and let U be an unbounded, forward invariant Fatou component of f. We relate the number of singularities of an inner function associated to f $w ith the number of tracts of f. In particular, we show that if f lies in either of two large classes of functions in B, and also has finitely many tracts, then the number of singularities of an associated inner function is at most equal to the number of tracts of f. Our results imply that for hyperbolic functions of finite order there is an upper bound - related to the order - on the number of singularities of an associated inner function. |
| Grants: | Ministerio de Economía y Competitividad MTM2017-86795-C3-2-P Ministerio de Economía y Competitividad MDM-2014-0445 Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1374 |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Transcendental dynamics ; Inner functions ; Hyperbolic functions |
| Published in: | Journal of mathematical analysis and applications, Vol. 477, Issue 1 (September 2019) , p. 536-550, ISSN 1096-0813 |
Postprint 17 p, 411.0 KB |