Google Scholar: citations
Field effect enhancement in buffered quantum nanowire networks
Krizek, Filip (Center for Quantum Devices and Station Q Copenhagen)
Sestoft, Joachim E. (Center for Quantum Devices and Station Q Copenhagen)
Aseev, Pavel (Delft University of Technology)
Martí-Sánchez, Sara (Institut Català de Nanociència i Nanotecnologia)
Vaitiekenas, Saulius (Center for Quantum Devices and Station Q Copenhagen)
Casparis, Lucas (Center for Quantum Devices and Station Q Copenhagen)
Khan, Sabbir A. (Center for Quantum Devices and Station Q Copenhagen)
Liu, Yu (Center for Quantum Devices and Station Q Copenhagen)
Stankevič, Tomas (Center for Quantum Devices and Station Q Copenhagen)
Whiticar, A. M. (Center for Quantum Devices and Station Q Copenhagen)
Fursina, Alexandra (Delft University of Technology)
Boekhout, Frenk (QuTech and Netherlands Organization for Applied Scientific Research)
Koops, René (QuTech and Netherlands Organization for Applied Scientific Research)
Uccelli, Emanuele (QuTech and Netherlands Organization for Applied Scientific Research)
Kouwenhoven, Leo P. (Delft University of Technology)
Marcus, Charles M. (Center for Quantum Devices and Station Q Copenhagen)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Krogstrup, Peter (Center for Quantum Devices and Station Q Copenhagen)

Date: 2018
Abstract: III-V semiconductor nanowires have shown great potential in various quantum transport experiments. However, realizing a scalable high-quality nanowire-based platform that could lead to quantum information applications has been challenging. Here, we study the potential of selective area growth by molecular beam epitaxy of InAs nanowire networks grown on GaAs-based buffer layers, where Sb is used as a surfactant. The buffered geometry allows for substantial elastic strain relaxation and a strong enhancement of field effect mobility. We show that the networks possess strong spin-orbit interaction and long phase-coherence lengths with a temperature dependence indicating ballistic transport. With these findings, and the compatibility of the growth method with hybrid epitaxy, we conclude that the material platform fulfills the requirements for a wide range of quantum experiments and applications.
Grants: European Commission 722176
European Commission 716655
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-327
Ministerio de Economía y Competitividad SEV-2013-0295
Rights: Tots els drets reservats.
Language: Anglès
Document: Article ; recerca ; Versió sotmesa a revisió
Subject: Elastic strain relaxation ; Field-effect mobilities ; Phase-coherence length ; Quantum information applications ; Selective area growth ; Semiconductor nanowire ; Spin orbit interactions ; Temperature dependence
Published in: Physical review materials, Vol. 2, Issue 9 (September 2018) , art. 93401, ISSN 2475-9953

DOI: 10.1103/PhysRevMaterials.2.093401


Preprint
11 p, 2.8 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2019-12-20, last modified 2022-09-10



   Favorit i Compartir