Home > Articles > Published articles > On the upper bound of the criticality of potential systems at the outer boundary using the Roussarie-Ecalle compensator |
Date: | 2019 |
Abstract: | This paper is concerned with the study of the criticality of families of planar centers. More precisely, we study sufficient conditions to bound the number of critical periodic orbits that bifurcate from the outer boundary of the period annulus of potential centers. In the recent years, the new approach of embedding the derivative of the period function into a collection of functions that form a Chebyshev system near the outer boundary has shown to be fruitful in this issue. In this work, we tackle with a remaining case that was not taken into account in the previous studies in which the Roussarie-Ecalle compensator plays an essential role. The theoretical results we develop are applied to study the bifurcation diagram of the period function of two different families of centers: the power-like family x¨=x−x, p,q∈R with p>q; and the family of dehomogenized Loud's centers. |
Grants: | Ministerio de Economía y Competitividad MTM2017-82348-C2-1-P Ministerio de Economía y Competitividad MTM2017-86795-C3-1-P |
Rights: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. |
Language: | Anglès |
Document: | Article ; recerca ; Versió acceptada per publicar |
Subject: | Center ; Period function ; Critical periodic orbit ; Bifurcation ; Criticality ; Chebyshev system |
Published in: | Journal of differential equations, Vol. 267, Issue 6 (September 2019) , p. 3922-3951, ISSN 1090-2732 |
Postprint 23 p, 530.2 KB |